Ribosomes are essential intracellular machines composed of proteins and RNA molecules. The DNA sequences (rDNA) encoding ribosomal RNAs (rRNAs) are tandemly repeated and give origin to the nucleolus. Here we develop a computational method for estimating rDNA dosage (copy number) and mitochondrial DNA abundance using whole-genome short-read DNA sequencing. We estimate these attributes across hundreds of human genomes and their association with global gene expression. The analyses uncover abundant variation in rDNA dosage that is coupled with the expression of hundreds of functionally coherent gene sets. These include associations with genes coding for chromatin components that target the nucleolus, including CTCF and HP1b. Finally, the data show an inverse association between rDNA dosage and mitochondrial DNA abundance that is manifested across genotypes. Our findings uncover a novel and cryptic source of hypervariable genomic diversity with global regulatory consequences (ribosomal eQTL) in humans. The variation provides a mechanism for cellular homeostasis and for rapid and reversible adaptation.
Genetic conflicts between sexes and generations provide a foundation for understanding the functional evolution of sex chromosomes and sexually dimorphic phenotypes. Y chromosomes of Drosophila contain multi-megabase stretches of satellite DNA repeats and a handful of protein-coding genes that are monomorphic within species. Nevertheless, polymorphic variation in heterochromatic Y chromosomes of Drosophila result in genome-wide gene expression variation. Here we show that such naturally occurring Y-linked regulatory variation (YRV) can be detected in somatic tissues and contributes to the epigenetic balance of heterochromatin/ euchromatin at three distinct loci showing position-effect variegation (PEV). Moreover, polymorphic Y chromosomes differentially affect the expression of thousands of genes in XXY female genotypes in which Y-linked protein-coding genes are not transcribed. The data show a disproportionate influence of YRV on the variable expression of genes whose protein products localize to the nucleus, have nucleic-acid binding activity, and are involved in transcription, chromosome organization, and chromatin assembly. These include key components such as HP1, Trithorax-like (GAGA factor), Su(var)3-9, Brahma, MCM2, ORC2, and inner centromere protein. Furthermore, mitochondria-related genes, immune response genes, and transposable elements are also disproportionally affected by Y chromosome polymorphism. These functional clusterings may arise as a consequence of the involvement of Y-linked heterochromatin in the origin and resolution of genetic conflicts between males and females. Taken together, our results indicate that Y chromosome heterochromatin serves as a major source of epigenetic variation in natural populations that interacts with chromatin components to modulate the expression of biologically relevant phenotypic variation.evolution | heterochromatin | position-effect variegation | regulatory
Tandemly repeated ribosomal DNA (rDNA) arrays are among the most evolutionary dynamic loci of eukaryotic genomes. The loci code for essential cellular components, yet exhibit extensive copy number (CN) variation within and between species. CN might be partly determined by the requirement of dosage balance between the 5S and 45S rDNA arrays. The arrays are nonhomologous, physically unlinked in mammals, and encode functionally interdependent RNA components of the ribosome. Here we show that the 5S and 45S rDNA arrays exhibit concerted CN variation (cCNV). Despite 5S and 45S rDNA elements residing on different chromosomes and lacking sequence similarity, cCNV between these loci is strong, evolutionarily conserved in humans and mice, and manifested across individual genotypes in natural populations and pedigrees. Finally, we observe that bisphenol A induces rapid and parallel modulation of 5S and 45S rDNA CN. Our observations reveal a novel mode of genome variation, indicate that natural selection contributed to the evolution and conservation of cCNV, and support the hypothesis that 5S CN is partly determined by the requirement of dosage balance with the 45S rDNA array. We suggest that human disease variation might be traced to disrupted rDNA dosage balance in the genome.nucleolus | ribosome | gene dosage balance | concerted evolution | bisphenol A R epeated gene arrays have provided unique challenges to genetic and genome analyses, and have remained among the most elusive components of eukaryotic genomes (1, 2). Tandemly repeated loci of high copy number (CN) are labile, evolutionary dynamic, often subjected to concerted evolution of DNA sequences, and display abundant CN variation that emerges from high rates of repeat expansion and contraction (1). Moreover, natural selection contributes to the determination of gene CN, shaping rapid gene amplification in cancer, balanced gene loss after whole genome duplication, and optimal gene CN in locally adapted populations (3-5). For example, higher CN of the amylase gene is present in populations with starch-rich diets across organisms as diverse as humans, dogs, and fungi (3, 6, 7). Remarkably, gene CN may also be developmentally amplified in specific tissues to ensure rates of transcription in genes with high transcriptional demands (8,9). This is the case, for instance, of the chorion genes in Drosophila, which are amplified up to 80 fold in ovarian cells (10).The ribosomal DNA (rDNA) arrays display substantial CN variation within and between species (2, 11-16). The variation is functionally relevant with rDNA CN polymorphism modifying chromatin states and gene expression across the genome in humans and flies (17)(18)(19). In mammals, the rDNA arrays are dispersed across several chromosomes, and encode the four rRNAs that account for more than 60% of all transcription in the cell (20,21). Transcription of rDNA loci varies with cell and tissue type and is epigenetically regulated with allelic specificity (22, 23). The four rRNAs are indispensable structural and catalyti...
The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.