The binary encoding of real valued inputs is a crucial part of Weightless Neural Networks. The Linear Thermometer and its variations are the most prominent methods to determine binary encoding for input data but, as they make assumptions about the input distribution, the resulting encoding is sub-optimal and possibly wasteful when the assumption is incorrect. We propose a new thermometer approach that doesn't require such assumptions. Our results show that it achieves similar or better accuracy when compared to a thermometer that correctly assumes the distribution, and accuracy gains up to 26.3% when other thermometer representations assume an unsound distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.