Radio propagation prediction simulation methods based on deterministic technique such as ray launching is extensively used to accomplish radio channel characterization. However, the superiority of the simulation depends on the number of rays launched and received. This paper presented the indoor three-dimensional (3D) Minimum Ray Launching Maximum Accuracy (MRLMA) technique, which is applicable for an efficient indoor radio wave propagation prediction. Utilizing the novel MRLMA technique in the simulation environment for ray lunching and tracing can drastically reduce the number of rays that need to be traced, and improve the efficiency of ray tracing. Implementation and justification of MRLMA presented in the paper. An indoor office 3D layouts are selected and simulations have been performed using the MRLMA and other reference techniques. Results showed that the indoor 3D MRLMA model is appropriate for wireless communications network systems design and optimization process with respect to efficiency, coverage, number of rays launching, number of rays received by the mobile station, and simulation time.
This research article proposes the speed control of a separately excited DC motor (SEDM) in the constant torque region. The novelty of this article lies in the application of artificial neural network-based model reference controller (MRC) for the speed control of SEDM. This paper also discusses and compares the speed control systems of SEDM using PI-controlled and fuzzy logic-controlled chopper circuit with MRC. The entire system has been modeled using MATLAB 7.0/SIMULINK toolbox. It has been observed that chopper-controlled speed control system could be eliminated by the use of MRC and the performance of the proposed system is comparable with speed control system using chopper circuit.
The purpose of this paper is to design an efficient recurrent neural network (RNN)-based speech recognition system using software with long short-term memory (LSTM). The design process involves speech acquisition, pre-processing, feature extraction, training and pattern recognition tasks for a spoken sentence recognition system using LSTM-RNN. There are five layers namely, an input layer, a fully connected layer, a hidden LSTM layer, SoftMax layer and a sequential output layer. A vocabulary of 80 words which constitute 20 sentences is used. The depth of the layer is chosen as 20, 42 and 60 and the accuracy of each system is determined. The results reveal that the maximum accuracy of 89% is achieved when the depth of the hidden layer is 42. Since the depth of the hidden layer is fixed for a task, increased performance can be achieved by increasing the number of hidden layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.