High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle's reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle's hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-toflight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA's next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal observations confirmed the challenge of a long-range acquisition during re-entry. These challenges are due to unknown atmospheric conditions, image saturation, vibration etc. This provides the motivation for the use of a digital NIR sensor. The characterizations performed on the digital NIR sensor included radiometric, spatial, and spectral measurements using blackbody radiation sources and known targets. An assessment of the collected data for three Space Shuttle atmospheric re-entries, STS-119, STS-125, and STS-128, are provided along with a description of various events of interest captured using the digital NIR imaging system such as RCS firings and boundary layer transitions. Lastly the process used to convert the raw image counts to quantitative temperatures is presented along with comparisons to the Space Shuttle's onboard thermocouples.
High-resolution, calibrated, near-infrared imagery of the Space Shuttle during reentry has been obtained by a US Navy NP-3D Orion aircraft as part of NASA's HYTHIRM (Hypersonic Thermodynamic InfraRed Measurements) project. The long-range optical sensor package is called Cast Glance. Three sets of imagery have been processed thus far: 1) STS-119 when Shuttle Discovery was at 52 km away at Mach 8.4, 2) STS-125 when Shuttle Atlantis was 71 km away at Mach 14.3, and 3) STS-128 when Shuttle Discovery was at 80 km away at Mach 14.7. The challenges presented in processing a manually-tracked high-angular rate, air-to-air image data collection include management of significant frame-to-frame motions, motion-induced blurring, changing orientations and ranges, daylight conditions, and sky backgrounds (including some cirrus clouds). This paper describes processing the imagery to estimate Shuttle surface temperatures. Our goal is to reduce the detrimental effects due to motions (sensor and Shuttle), vibration, and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity variations. Our approach is to select and utilize only the highest quality images, register many cotemporal image frames to a single image frame, and then add the registered frames to improve image quality and reduce noise. These registered and averaged intensity images are converted to temperatures on the Shuttle's windward surface using a series of steps starting with preflight calibration data. Comparisons with thermocouples at different points along the space Shuttle and between the three reentries will be shown.
Major elements of an experiment called the Infrared Sensing Aeroheating Flight Experiment are discussed. The primary experiment goal is to provide reentry global temperature images from infrared measurements to define the characteristics of hypersonic boundary-layer transition during flight. Specifically, the experiment is to identify, monitor, and quantify hypersonic boundary layer windward surface transition of the X-33 vehicle during flight. In addition, the flight data will serve as a calibration and validation of current boundary layer transition prediction techniques, provide benchmark laminar, transitional, and fully turbulent global aeroheating data in order to validate existing wind tunnel and computational results, and to advance aeroheating technology. Shuttle Orbiter data from STS-96 used to validate the data acquisition and data reduction to global temperatures, in order to mitigate the experiment risks prior to the maiden flight of the X-33, is discussed. STS-96 reentry midwave (3-5 µm) infrared data were collected at the Ballistic Missile Defense Organization/Innovative Sciences and Technology Experimentation Facility site at NASA-Kennedy Space Center and subsequently mapped into global temperature contours using ground calibrations only. A series of image mapping techniques have been developed in order to compare each frame of infrared data with thermocouple data collected during the flight. Comparisons of the ground calibrated global temperature images with the corresponding thermocouple data are discussed. The differences are shown to be generally less than about 5%, which is comparable to the expected accuracy of both types of aeroheating measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.