We present a hyper-heuristic approach to solve Orienteering Problem with Hotel Selection (OPHS). In practical applications, OPHS appears when a tourist is planning to visit various attractions and there is not enough time to reach all of them in a single day. Therefore, the tourist must build a tour within several days by selecting hotels, where each day has a different time budget. We propose a hyper-heuristic based on a Large Neighborhood Search, composed by a set of low-level heuristics that satisfy the different constraints associated with the problem. We put special emphasis on collaboration between low-level heuristics in order to guide the algorithm to more promising areas. We use 395 benchmark instances with known optimal solutions. This approach proves to be a more general method, with a simpler design compared to the literature, and is able to find 217 of the 395 known optimal solutions, in acceptable computational times. INDEX TERMS Hotel selection, hyper-heuristic, low-level heuristics, orienteering problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.