Tear film osmolarity was found to be the single best marker of disease severity across normal, mild/moderate, and severe categories. Other tests were found to be informative in the more severe forms of disease; thus, clinical judgment remains an important element in the clinical assessment of dry eye severity. The results also indicate that the initiation and progression of dry eye is multifactorial and supports the rationale for redefining severity on the basis of a continuum of clinical signs. (ClinicalTrials.gov number, NCT00848198.).
Tear hyperosmolarity, defined by a referent of 316 mOsmol/L, was superior in overall accuracy to any other single test for dry eye diagnosis (Lactoplate, Schirmer test, and Rose Bengal staining), even when the other test measures were applied to a diagnosis within the sample groups from which they were derived. For overall accuracy in the diagnosis of dry eye, the osmolarity test was found to be comparable with the results of combined (in parallel or series) tests.
Dry eye disease (DED), a multifactorial disease of the tears and ocular surface, is common and has a significant impact on quality of life. Reduced aqueous tear flow and/or increased evaporation of the aqueous tear phase leads to tear hyperosmolarity, a key step in the vicious circle of DED pathology. Tear hyperosmolarity gives rise to morphological changes such as apoptosis of cells of the conjunctiva and cornea, and triggers inflammatory cascades that contribute to further cell death, including loss of mucin-producing goblet cells. This exacerbates tear film instability and drives the cycle of events that perpetuate the condition. Traditional approaches to counteracting tear hyperosmolarity in DED include use of hypotonic tear substitutes, which have relatively short persistence in the eye. More recent attempts to counteract tear hyperosmolarity in DED have included osmoprotectants, small organic molecules that are used in many cell types throughout the natural world to restore cell volume and stabilize protein function, allowing adaptation to hyperosmolarity. There is now an expanding pool of clinical data on the efficacy of DED therapies that include osmoprotectants such as erythritol, taurine, trehalose and L-carnitine. Osmoprotectants in DED may directly protect cells against hyperosmolarity and thereby promote exit from the vicious circle of DED physiopathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.