Despite the recent increase in our understanding of the development of pain processing, it is still not known whether premature infants are capable of processing pain at a cortical level. In this study, changes in cerebral oxygenation over the somatosensory cortex were measured in response to noxious stimulation using real-time near-infrared spectroscopy in 18 infants aged between 25 and 45 weeks postmenstrual age. The noxious stimuli were heel lances performed for routine blood sampling; no blood tests were performed solely for the purpose of the study. .4361 mol/L/week; age range, 25-38 weeks). The response was modality specific because no response was detected after non-noxious stimulation of the heel, even when accompanied by reflex withdrawal of the foot. We conclude that noxious information is transmitted to the preterm infant cortex from 25 weeks, highlighting the potential for both higher-level pain processing and pain-induced plasticity in the human brain from a very early age.
SummaryWhen and how infants begin to discriminate noxious from innocuous stimuli is a fundamental question in neuroscience [1]. However, little is known about the development of the necessary cortical somatosensory functional prerequisites in the intact human brain. Recent studies of developing brain networks have emphasized the importance of transient spontaneous and evoked neuronal bursting activity in the formation of functional circuits [2, 3]. These neuronal bursts are present during development and precede the onset of sensory functions [4, 5]. Their disappearance and the emergence of more adult-like activity are therefore thought to signal the maturation of functional brain circuitry [2, 4]. Here we show the changing patterns of neuronal activity that underlie the onset of nociception and touch discrimination in the preterm infant. We have conducted noninvasive electroencephalogram (EEG) recording of the brain neuronal activity in response to time-locked touches and clinically essential noxious lances of the heel in infants aged 28–45 weeks gestation. We show a transition in brain response following tactile and noxious stimulation from nonspecific, evenly dispersed neuronal bursts to modality-specific, localized, evoked potentials. The results suggest that specific neural circuits necessary for discrimination between touch and nociception emerge from 35–37 weeks gestation in the human brain.
SummaryBackgroundMany infants admitted to hospital undergo repeated invasive procedures. Oral sucrose is frequently given to relieve procedural pain in neonates on the basis of its effect on behavioural and physiological pain scores. We assessed whether sucrose administration reduces pain-specific brain and spinal cord activity after an acute noxious procedure in newborn infants.MethodsIn this double-blind, randomised controlled trial, 59 newborn infants at University College Hospital (London, UK) were randomly assigned to receive 0·5 mL 24% sucrose solution or 0·5 mL sterile water 2 min before undergoing a clinically required heel lance. Randomisation was by a computer-generated randomisation code, and researchers, clinicians, participants, and parents were masked to the identity of the solutions. The primary outcome was pain-specific brain activity evoked by one time-locked heel lance, recorded with electroencephalography and identified by principal component analysis. Secondary measures were baseline behavioural and physiological measures, observational pain scores (PIPP), and spinal nociceptive reflex withdrawal activity. Data were analysed per protocol. This study is registered, number ISRCTN78390996.Findings29 infants were assigned to receive sucrose and 30 to sterilised water; 20 and 24 infants, respectively, were included in the analysis of the primary outcome measure. Nociceptive brain activity after the noxious heel lance did not differ significantly between infants who received sucrose and those who received sterile water (sucrose: mean 0·10, 95% CI 0·04–0·16; sterile water: mean 0·08, 0·04–0·12; p=0·46). No significant difference was recorded between the sucrose and sterile water groups in the magnitude or latency of the spinal nociceptive reflex withdrawal recorded from the biceps femoris of the stimulated leg. The PIPP score was significantly lower in infants given sucrose than in those given sterile water (mean 5·8, 95% CI 3·7–7·8 vs 8·5, 7·3–9·8; p=0·02) and significantly more infants had no change in facial expression after sucrose administration (seven of 20 [35%] vs none of 24; p<0·0001).InterpretationOur data suggest that oral sucrose does not significantly affect activity in neonatal brain or spinal cord nociceptive circuits, and therefore might not be an effective analgesic drug. The ability of sucrose to reduce clinical observational scores after noxious events in newborn infants should not be interpreted as pain relief.FundingMedical Research Council.
While human infants can display distinctive behavioural and physiological spinal cord and brainstem responses to noxious stimulation, it is not known whether cortical neurons are specifically activated by noxious stimuli in newborns. Here, using a novel approach to time-lock an EEG recording to a clinically required heel lance, we show the presence of a distinct nociceptive-specific potential in newborn infants (35-39 weeks postmenstrual age). The potential can be observed in single trials in the central electrodes (Cz and CPz) and using principal component analysis is characterised by a positivity that occurs at approximately 560 ms post-stimulus (N420-P560; P, positive; N, negative). The magnitude of the nociceptive-specific potential is not dependent on sleep state, whereas an earlier potential (N150-P260-N430), which is sleep-state dependent, is evoked by both noxious and non-noxious stimulation. These results provide the first direct evidence of specific noxious-evoked neural activity in the infant brain and suggest that newborn infants are capable of the sensory-discriminative aspects of pain experience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.