Intrauterine infection, such as occurs in chorioamnionitis, is a principal cause ofpreterm birth and is a strong risk factor for neurological morbidity and cerebral palsy. This study aims to examine whether human amnion epithelial cells (hAECs) can be used as a potential therapeutic agent to reduce brain injury induced by intra-amniotic administration of lipopolysaccharide (LPS) in preterm fetal sheep. Pregnant ewes underwent surgery at approximately 110 days of gestation (term is approx. 147 days) for implantation of catheters into the amniotic cavity, fetal trachea, carotid artery and jugular vein. LPS was administered at 117 days; hAECs were labeled with carboxyfluorescein succinimidyl ester and administered at 0, 6 and 12 h, relative to LPS administration, into the fetal jugular vein, trachea or both. Control fetuses received an equivalent volume of saline. Brains were collected 7 days later for histological assessment of brain injury. Microglia (Iba-1-positive cells) were present in the brain of all fetuses and were significantly increased in the cortex, subcortical and periventricular white matter in fetuses that received LPS, indicative of inflammation. Inflammation was reduced in fetuses that received hAECs. In LPS fetuses, the number of TUNEL-positive cells was significantly elevated in the cortex, periventricular white matter, subcortical white matter and hippocampus compared with controls, and reduced in fetuses that received hAECs in the cortex and periventricular white matter. Within the fetal brains studied there was a significant positive correlation between the number of Iba-1-immunoreactive cells and the number of TUNEL-positive cells (R2 = 0.19, p < 0.001). The administration of hAECs protects the developing brain when administered concurrently with the initiation of intrauterine inflammation.
Alcohol use disorders (AUDs), including alcohol abuse and dependence, have been linked to the development of acute lung injury (ALI). Prior clinical investigations suggested an association between AUDs and abnormal alveolar epithelial permeability mediated through pulmonary oxidative stress that may partially explain this relationship. We sought to determine if correcting pulmonary oxidative stress in the setting of AUDs would normalize alveolar epithelial permeability in a double-blinded, randomized, placebo-controlled trial of Protandim, a nutraceutical reported to enhance antioxidant activity. We randomized 30 otherwise healthy AUD subjects to receive directly observed inpatient oral therapy with either Protandim (1,350 mg/day) or placebo. Subjects underwent bronchoalveolar lavage (BAL) and blood sampling before study drug administration and after 7 days of therapy; all AUD subjects completed the study protocol without adverse events. BAL total protein was measured at each timepoint as an indicator of alveolar epithelial permeability. In subjects with AUDs, before study drug initiation, BAL total protein values were not significantly higher than in 11 concurrently enrolled controls (P = 0.07). Over the 7-day study period, AUD subjects did not exhibit a significant change in BAL total protein, regardless of their randomization to Protandim {n = 14, -2% [intraquartile range (IQR), -56-146%]} or to placebo [n = 16, 77% (IQR -20-290%); P = 0.19]. Additionally, among those with AUDs, no significant changes in BAL oxidative stress indexes, epithelial growth factor, fibroblast growth factor, interleukin-1β, or interleukin-10 were observed regardless of drug type received. Plasma thiobarbituric acid reactive substances, a marker of lipid peroxidation, decreased significantly over time among AUD subjects randomized to placebo (P < 0.01). These results suggest that Protandim for 7 days in individuals with AUDs who are newly abstinent does not alter alveolar epithelial permeability. However, our work demonstrates the feasibility of safely conducting clinical trials that include serial bronchoscopies in a vulnerable population at risk for acute lung injury.
Key points• Intrauterine inflammation is associated with preterm birth and poor long-term cardiopulmonary and neurological outcomes. The effect of intrauterine inflammation on the cardiopulmonary and cerebral haemodynamic transition after preterm birth is poorly understood.• We demonstrated that intrauterine inflammation increased pulmonary vascular resistance, reduced pulmonary blood flow and left ventricular output and increased cerebral blood flow and cerebral oxygen delivery after preterm birth.• Increasing positive end-expiratory pressure, which causes a haemodynamic challenge, reduced pulmonary blood flow and left ventricular output in controls but not in lipopolysaccharide-exposed lambs. A transient reduction in brachiocephalic arterial pressure was observed in lipopolysaccharide-exposed lambs.• Intrauterine inflammation altered the cardiopulmonary and cerebral haemodynamic transition at birth and reduced the responsiveness of the pulmonary circulation to an increase in positive end-expiratory pressure.Abstract Intrauterine inflammation is associated with preterm birth and poor long-term cardiopulmonary outcomes. We aimed to determine the effect of intrauterine inflammation on the cardiopulmonary and cerebral haemodynamic transition at birth, and the response to subsequent haemodynamic challenge. Fetal instrumentation was performed at ∼112 days gestation (term is 147 days) for measurement of cardiopulmonary and cerebral haemodynamics. At 118 days, inflammation was induced by intra-amniotic administration of lipopolysaccharide (LPS; n = 7); controls (n = 5) received intra-amniotic saline. At 125 days lambs were delivered and mechanically ventilated. Arterial blood gases, pulmonary and systemic arterial blood pressures and flows were measured during the perinatal period. At 10 min a haemodynamic challenge was administered by increasing positive end-expiratory pressure. During the first 10 min after birth, LPS-exposed lambs had higher pulmonary vascular resistance and lower pulmonary blood flow and left ventricular output than controls. Carotid arterial blood flow was higher in LPS-exposed lambs than controls between 3 and 7 min after delivery, and cerebral oxygen delivery was higher at 5 min. During the haemodynamic challenge, pulmonary blood flow and left ventricular output were reduced in controls but not in LPS-exposed lambs; a transient reduction in brachiocephalic arterial pressure occurred in LPS-exposed lambs but not in controls. Intrauterine inflammation altered the cardiopulmonary and cerebral haemodynamic transition at birth and reduced the cardiopulmonary response to a haemodynamic challenge after birth. The transient reduction in brachiocephalic arterial pressure suggests intrauterine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.