During Gram-negative bacterial infections, excessive lipopolysaccharide (LPS) induces inflammation and sepsis via action on immune cells. However, the bulk of LPS can be cleared from circulation by the liver. Liver clearance is thought to be a slow process mediated exclusively by phagocytic resident macrophages, Kupffer cells (KC). However, we discovered that LPS disappears rapidly from the circulation, with a half-life of 2–4 minutes in mice and liver eliminates about three quarters of LPS from blood circulation. Using microscopic techniques, we found that ~75% of fluor-tagged LPS in liver became associated with liver sinusoidal endothelial cells (LSEC) and only ~25% with KC. Notably, the ratio of LSEC-KC associated LPS remained unchanged 45 min after infusion, indicating that LSEC independently processes the LPS. Most interestingly, results of kinetic analysis of LPS bioactivity, using modified limulus amebocyte lysate assay, suggest that recombinant factor-C, an LPS binding protein, competitively inhibits HDL-mediated LPS association with LSEC early in the process. Supporting the previous notion 3 min post-infusion, 75% of infused fluorescently-tagged LPS-HDL complex associates with LSEC, suggesting that HDL facilitates LPS clearance. These results lead us to propose a new paradigm of LSEC and HDL in clearing LPS with a potential to avoid inflammation during sepsis.
Cholesterol from peripheral tissue, carried by HDL, is metabolized in the liver after uptake by the HDL receptor, SR-B1. Hepatocytes have long been considered the only liver cells expressing SR-B1; however, in this study we describe two disparate immunofluorescence (IF) experiments that suggest otherwise. Using high-resolution confocal microscopy employing ultrathin (120 nm) sections of mouse liver, improving z-axis resolution, we identified the liver sinusoidal endothelial cells (LSEC), marked by FcγRIIb, as the cell within the liver expressing abundant SR-B1. In contrast, the hepatocyte, identified with β-catenin, expressed considerably weaker levels, although optical resolution of SR-B1 was inadequate. Thus, we moved to a different IF strategy, first separating dissociated liver cells by gradient centrifugation into two portions, hepatocytes (parenchymal cells) and LSEC (non-parenchymal cells). Characterizing both portions for the cellular expression of SR-B1 by flow cytometry, we found that LSEC expressed considerable amounts of SR-B1 while in hepatocytes SR-B1 expression was barely perceptible. Assessing mRNA of SR-B1 by real time PCR we found messenger expression in LSEC to be about 5 times higher than in hepatocytes.
We crafted human immunodeficiency virus (HIV)-like particles of diameter about 140 nm, which expressed two major HIV-1 proteins, namely, env and gag gene products, and used this reagent to simulate the rate of decay of HIV from the blood stream of BALB/c male mice. We found that most (~90%) of the particles were eliminated (cleared) from the blood by the liver sinusoidal endothelial cells (LSECs), the remainder from Kupffer cells; suggesting that LSECs are the major liver scavengers for HIV clearance from blood. Decay was rapid with kinetics suggesting second order with respect to particles, which infers dimerization of a putative receptor on LSEC. The number of HIV-like particles required for saturating the clearance mechanism was approximated. The capacity for elimination of blood-borne HIV-like particles by the sinusoid was 112 million particles per minute. Assuming that the sinusoid endothelial cells were about the size of glass-adherent macrophages, then elimination capacity was more than 540 particles per hour per endothelial cell.
Neutralizing Abs suppress HIV infection by accelerating viral clearance from blood circulation in addition to neutralization. The elimination mechanism is largely unknown. We determined that human liver sinusoidal endothelial cells (LSEC) express FcγRIIb as the lone Fcγ receptor, and using humanized FcγRIIb mouse, we found that Ab-opsonized HIV pseudoviruses were cleared considerably faster from circulation than HIV by LSEC FcγRIIb. Compared with humanized FcγRIIb-expressing mice, HIV clearance was significantly slower in FcγRIIb knockout mice. Interestingly, a pentamix of neutralizing Abs cleared HIV faster compared with hyperimmune anti-HIV Ig (HIVIG), although the HIV Ab/Ag ratio was higher in immune complexes made of HIVIG and HIV than pentamix and HIV. The effector mechanism of LSEC FcγRIIb was identified to be endocytosis. Once endocytosed, both Ab-opsonized HIV pseudoviruses and HIV localized to lysosomes. This suggests that clearance of HIV, endocytosis, and lysosomal trafficking within LSEC occur sequentially and that the clearance rate may influence downstream events. Most importantly, we have identified LSEC FcγRIIb-mediated endocytosis to be the Fc effector mechanism to eliminate cell-free HIV by Abs, which could inform development of HIV vaccine and Ab therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.