Over the past few months, the spread of the current COVID-19 epidemic has caused tremendous damage worldwide, and unstable many countries economically. Detailed scientific analysis of this event is currently underway to come. However, it is very important to have the right facts and figures to take all possible actions that are needed to avoid COVID-19. In the practice and application of big data sciences, it is always of interest to provide the best description of the data under consideration. The recent studies have shown the potential of statistical distributions in modeling data in applied sciences, especially in medical science. In this article, we continue to carry this area of research, and introduce a new statistical model called the arcsine modified Weibull distribution. The proposed model is introduced using the modified Weibull distribution with the arcsine-X approach which is based on the trigonometric strategy. The maximum likelihood estimators of the parameters of the new model are obtained and the performance these estimators are assessed by conducting a Monte Carlo simulation study. Finally, the effectiveness and utility of the arcsine modified Weibull distribution are demonstrated by modeling COVID-19 patients data. The data set represents the survival times of fifty-three patients taken from a hospital in China. The practical application shows that the proposed model out-classed the competitive models and can be chosen as a good candidate distribution for modeling COVID-19, and other related data sets.
The power XLindley (PXL) distribution is introduced in this study. It is a two-parameter distribution that extends the XLindley distribution established in this paper. Numerous statistical characteristics of the suggested model were determined analytically. The proposed model’s fuzzy dependability was statistically assessed. Numerous estimation techniques have been devised for the purpose of estimating the proposed model parameters. The behaviour of these factors was examined using randomly generated data and developed estimation approaches. The suggested model seems to be superior to its base model and other well-known and related models when applied to the COVID-19 data set.
This study reveals that increases in the global population command an augmented demand for products and services that calls for more effective ways of using existing natural resources and materials. The recent development of information and communication technologies, which had a great impact on many areas, also had a damaging effect on the environment and human health. Therefore, societies are moving toward a greener future by reducing the consumption of nonrenewable materials, raw materials, and resources while at the same time decreasing energy pollution and consumption. Since information technology is considered a tool for solving ecological difficulties, the green Internet of things (G-IoT) is playing a vital role in creating a sustainable home. Extensive data analysis is required to obtain a valuable overview of the large and diverse data generated by the G-IoT. The gathered information will facilitate forecasting, decision-making, and other activities related to smart urban services and then contribute to the incessant development of G-IoT technology. Therefore, even if sustainable and smart cities become an actuality, the G-IoT approach and the knowledge gained through big data (BD) analysis will make cities more sustainable, safer, and smarter. The goal of this article is to combine innovation in technological development with the main focus on resource sharing in creating cities that improve the quality of life while reducing pollution and realizing more efficient use of the raw materials. In the practice of big data science, it is always of interest to provide the best description of the data under consideration. Recent studies have pointed out the applicability of the statistical distributions in modeling data in applied sciences. In this article, we introduce a new family of statistical models to provide the best description of the life span of the wireless sensors network’s data. Based on the proposed approach, a special submodel called new exponent power-Weibull distribution is studied in detail. The applicability of the proposed model is shown by analyzing the life span of the wireless sensors network’s data.
Extropy, as a complementary dual of entropy, has been discussed in many works of literature, where it is declared for other measures as an extension of extropy. In this article, we obtain the extropy of generalized order statistics via its dual and give some examples from well-known distributions. Furthermore, we study the residual and past extropy for such models. On the other hand, based on Farlie–Gumbel–Morgenstern distribution, we consider the residual extropy of concomitants of m-generalized order statistics and present this measure with some additional features. In addition, we provide the upper bound and stochastic orders of it. Finally, nonparametric estimation of the residual extropy of concomitants of m-generalized order statistics is included using simulated and real data connected with COVID-19 virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.