Objective
To examine cyclooxygenase‐2 (COX‐2) enzyme expression, its regulation by interleukin‐1β (IL‐1β), and the role of prostaglandin E2 (PGE2) in proteoglycan degradation in human osteoarthritic (OA) cartilage.
Methods
Samples of human OA articular cartilage, meniscus, synovial membrane, and osteophytic fibrocartilage were obtained at knee arthroplasty and cultured ex vivo with or without IL‐1β and COX inhibitors. COX expression was evaluated by immunohistochemistry and Western blot analysis. The enzymatic activity of COX was measured by conversion of arachidonic acid to PGE2. Cartilage degradation was evaluated by measuring the accumulation of sulfated glycosaminoglycans in the medium.
Results
IL‐1β induced robust expression of COX‐2 and PGE2 in OA meniscus, synovial membrane, and osteophytic fibrocartilage explants, whereas low levels were produced in OA articular cartilage. IL‐1β also induced cartilage proteoglycan degradation in OA synovial membrane‐cartilage cocultures. Increased proteoglycan degradation corresponded to the induction of COX‐2 protein expression in, and PGE2 production from, the synovial membrane. Dexamethasone, neutralizing IL‐1β antibody, or the selective COX‐2 inhibitor, SC‐236, attenuated both the IL‐1β‐induced PGE2 production and cartilage proteoglycan degradation in these cocultures. The addition of PGE2 reversed the inhibition of proteoglycan degradation caused by SC‐236.
Conclusion
IL‐1β‐induced production of COX‐2 protein and PGE2 was low in OA articular cartilage compared with that in the other OA tissues examined. IL‐1β‐mediated degradation of cartilage proteoglycans in OA synovial membrane‐cartilage cocultures was blocked by the selective COX‐2 inhibitor, SC‐236, and the effect of SC‐236 was reversed by the addition of exogenous PGE2. Our data suggest that induction of synovial COX‐2‐produced PGE2 is one mechanism by which IL‐1β modulates cartilage proteoglycan degradation in OA.
Inflammation, which includes the release of growth factors, proinflammatory cytokines and prostaglandins, the infiltration and activation of inflammatory cells, and the induction of oxidative DNA damage, is known to play a role in cancer development. The combination of damage to the skin resulting from chronic ultraviolet light B (UVB) exposure itself and the inflammatory response it induces is a major source of skin cancer development. Cyclooxygenase-2 (COX-2), an inflammatory enzyme responsible for the production of prostaglandins, is now implicated in the development of epithelial cancers, including squamous cell carcinoma in the skin. Previous work conducted in our laboratory has shown that topical treatment with celecoxib following UVB irradiation inhibits several parameters of acute inflammation, including vascular permeability, the infiltration and activation of neutrophils, and the production of prostaglandin E(2) (PGE(2)). The present studies expanded these observations, demonstrating the ability of topical celecoxib to inhibit acute oxidative damage. In addition, long-term studies illustrate the effectiveness of topical treatment with this drug in reducing chronic inflammation and UVB-induced papilloma/carcinoma formation. This data provides compelling evidence to explore the clinical efficacy of topically applied COX-2 inhibitors for the prevention of human skin cancers.
Cyclooxygenase (COX) exists in 2 related but unique isoforms: one is constitutive (COX-1) and functions in normal cell physiology, and the other is inducible (COX-2) and is expressed in response to inflammatory stimuli. Nonsteroidal antiinflammatory drugs (NSAIDs) cause renal toxicity following inhibition of renal cyclooxygenases. Humans and animals exhibit differences in susceptibility to NSAID-related renal toxicity, which may be associated with differences in expression of 1 or both isoforms of COX in the kidney. In this study, we evaluated COX-1 and COX-2 expression in the kidneys of mixed-breed dogs, Sprague-Dawley rats, cynomolgus monkeys, and humans. In addition, the effect of volume depletion on renal COX expression was investigated in rats, dogs, and monkeys. COX expression was evaluated using 1 or more of the following procedures: reverse transcriptase polymerase chain reaction, in situ hybridization, and immunohistochemistry. We demonstrated that both COX isoforms are expressed in the kidneys of all species examined, with differences in the localization and level of basal expression. COX-1 is expressed at high levels in the collecting ducts and renal vasculature of all species and in a small number of papillary interstitial cells in rats, monkeys, and humans. Basal levels of COX-2 are present in the maculae densa, thick ascending limbs, and papillary interstitial cells in rats and dogs and in glomerular podocytes and small blood vessels in monkeys and humans. COX-2 expression is markedly increased in volume-depleted rats and dogs but not monkeys. These results indicate that significant interspecies differences exist in the presence and distribution of COX isoforms, which may help explain the difference in species susceptibility to NSAID-related renal toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.