Resisted sprint training (RST) is commonly used for performance enhancement in athletics and team sports to develop acceleration ability. Evidence suggests that RST may be effective as a short-term intervention to improve successive sprints. While these improvements have been measured in team sport athletes, limited research has considered the acute effects of RST training in sprint-trained athletes. Therefore, the aim of the current study was to determine if performing RST with varsity level sprinters using sled-equivalent resistive loads of ∼45% body mass results in a potentiation effect, leading to improvements in subsequent maximal sprint performance over 0-5 m and 0-20 m. Competitive sprinters (n=20), were randomly assigned to perform a pre/post maximal 20 m sprint separated by either 3 resisted (RST group) or un-resisted (URS group) sprints. The RST or URS protocol was performed on four occasions separated by at least 7 days. No significant differences were observed between the RST and URS groups comparing changes in sprint times over 0-5 m (URS Δ = <0.01 s ± 0.03 s, RST Δ = <0.01 s ± 0.03 s) and 0-20 m (URS Δ = 0.013 s ± 0.04 s, RST Δ = <0.01 s ± 0.04 s). We conclude that resisted sprints using sled equivalent loads of 45% body mass are ineffective at inducing a potentiating effect on subsequent sprint performance in varsity level sprinters. In this population of trained athletes, greater loads may be necessary to induce a potentiating effect.
Sport-specific differences in the left ventricle (LV) of land-based athletes have been observed; however, comparisons to water-based athletes are sparse. The purpose of this study was to examine differences in LV structure and function in elite swimmers and runners. Sixteen elite swimmers [23 (2) years, 81% male, 69% white] and 16 age, sex, and race matched elite runners participated in the study. All athletes underwent resting echocardiography and indices of LV dimension, global LV systolic and diastolic function, and LV mechanics were determined. All results are presented as swimmers vs. runners. Early diastolic function was lower in swimmers including peak early transmitral filling velocity [76 (13) vs. 87 (11) cm ⋅ s-1, p = 0.02], mean mitral annular peak early velocity [16 (2) vs. 18 (2) cm ⋅ s-1, p = 0.01], and the ratio of peak early to late transmitral filling velocity [2.68 (0.59) vs. 3.29 (0.72), p = 0.005]. The diastolic mechanics index of time to peak untwisting rate also occurred later in diastole in swimmers [12 (10)% diastole vs. 5 (4)% diastole, p = 0.01]. Cardiac output was larger in swimmers [5.8 (1.5) vs. 4.7 (1.2) L ⋅ min-1, p = 0.04], which was attributed to their higher heart rates [56 (6) vs. 49 (6) bpm, p < 0.001] given stroke volumes were similar between groups. All other indices of LV systolic function and dimensions were similar between groups. Our findings suggest enhanced early diastolic function in elite runners relative to swimmers, which may be attributed to faster LV untwisting.
Ischemic preconditioning (IPC) was initially developed to protect the myocardium from ischemia through altered cardiocyte metabolism. Because of the observed effects on metabolism and oxygen kinetics, IPC gained interest as a potential ergogenic aid in sports. Limited research evaluating the effects of IPC on maximal short-duration activities has been performed, and of the existing literature, mixed outcomes resulting from intrasubject variation may have clouded the efficacy of this technique for enhancing sprint performance. Therefore, the current study employed a randomized repeated-measures crossover design with IPC, placebo (SHAM), and control conditions while using sprint-trained athletes (N = 18) to determine the effect of IPC (3 × 5-min occlusions, with 5-min reperfusion), concluding 15 min prior to maximal 10-s and 20-m sprinting. A visual analog scale was used in conjunction with the sprint trials to evaluate any possible placebo effect on performance. Despite a "significantly beneficial" perception of the IPC treatment compared with the SHAM trials (P < .001), no changes in sprint performance were observed after either the IPC or SHAM condition over 10 m (IPC Δ < 0.01 [0.02] s, SHAM Δ < 0.01 [0.02] s) or 20 m (IPC Δ = -0.01 [0.03] s, SHAM Δ < 0.01 [0.03] s) compared with control. Thus, an IPC protocol does not improve 10- or 20-m sprint performance in sprint-trained athletes.
This study sought to assess the reliability and comparability of two custom-built isokinetic dynamometers (Model A and Model B) with the gold-standard (Humac Norm). The two custom-built dynamometers consisted of commercially available leg extension machines attached to a robotically controlled resistance device (1080 Quantum), able to measure power, force and velocity outputs. Twenty subjects (14m/6f, 26±4.8yr, 176±7cm, 74.4±12.4kg) performed concentric leg extensions on the custom-built dynamometers and the Humac Norm. Fifteen maximal leg extensions were performed with each leg at 180° s-1, or the linear equivalent (~0.5m s-1). Peak power (W), mean power (W), and fatigue indexes (%) achieved on all three devices were compared. Both custom-built dynamometers revealed high reliability for peak and mean power on repeated tests (ICC>0.88). Coefficient of variation (CV) and standard error of measurement (SEM) were small when comparing power outputs obtained using Model A and the Humac Norm ( CV = 9.0%, SEM = 49W; peak CV = 8.4%, peak SEM = 49W). Whereas, Model B had greater variance ( CV = 13.3% SEM = 120W; peak CV = 14.7%, peak SEM = 146W). The custom-built dynamometers are capable of highly reliable measures, but absolute power outputs varied depending on the leg extension model. Consistent use of a single model offers reliable results for tracking muscular performance over time or testing an intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.