Individual humans, and members of diverse other species, show consistent differences in aggressiveness, shyness, sociability and activity. Such intraspecific differences in behaviour have been widely assumed to be non-adaptive variation surrounding (possibly) adaptive population-average behaviour. Nevertheless, in keeping with recent calls to apply Darwinian reasoning to ever-finer scales of biological variation, we sketch the fundamentals of an adaptive theory of consistent individual differences in behaviour. Our thesis is based on the notion that such Ôpersonality differencesÕ can be selected for if fitness payoffs are dependent on both the frequencies with which competing strategies are played and an individual's behavioural history. To this end, we review existing models that illustrate this and propose a game theoretic approach to analyzing personality differences that is both dynamic and state-dependent. Our motivation is to provide insights into the evolution and maintenance of an apparently common animal trait: personality, which has far reaching ecological and evolutionary implications.
Life-history theory is concerned with strategic decisions over an organism's lifetime. Evidence is accumulating about the way in which these decisions depend on the organism's physiological state and other components such as external circumstances. Phenotypic plasticity may be interpreted as an organism's response to its state. The quality of offspring may depend on the state and behaviour of the mother. Recent theoretical advances allow these and other state-dependent effects to be modelled within the same framework.
Evolutionary game theory is concerned with the evolutionarily stable outcomes of the process of natural selection. The theory is especially relevant when the fitness of an organism depends on the behaviour of other members of its population. Here we focus on the interaction between two organisms that have a conflict of interest. The standard approach to such two-player games is to assume that each player chooses a single action and that the evolutionarily stable action of each player is the best given the action of its opponent. We argue that, instead, most two-player games should be modelled as involving a series of interactions in which opponents negotiate the final outcome. Thus we should be concerned with evolutionarily stable negotiation rules rather than evolutionarily stable actions. The evolutionarily stable negotiation rule of each player is the best rule given the rule of its opponent. As we show, the action chosen as a result of the negotiation is not the best action given the action of the opponent. This conclusion necessitates a fundamental change in the way that evolutionary games are modelled.
The evolution of mate choice for genetic benefits has become the tale of two hypotheses: Fisher's 'run-away' and 'good genes', or viability indicators. These hypotheses are often pitted against each other as alternatives, with evidence that attractive males sire more viable offspring interpreted as support for good genes and with a negative or null relationship between mating success of sons and other components of fitness interpreted as favouring the Fisher process. Here, we build a general model of female choice for indirect benefits that captures the essence of both the 'Fisherian' and 'good-genes' models. All versions of our model point to a single process that favours female preference for males siring offspring of high reproductive value. Enhanced mating success and survival are therefore equally valid genetic benefits of mate choice, but their relative importance varies depending on female choice costs. The relationship between male attractiveness and survival may be positive or negative, depending on life-history trade-offs and mating skew. This relationship can change sign in response to increased costliness of choice or environmental change. Any form of female preference is subject to self-reinforcing evolution, and any relationship (or lack thereof) between male display and offspring survival is inevitably an indicator of offspring reproductive values. Costly female choice can be maintained with or without higher offspring survival.
1-bstract. W,e consi~er a simp~e. model in which an animal can control both its probability of starvatiOn and Its probabihty of predation. Probability of starvation is decreased by increa~ing the mea~ amount off~od o?t~i~ed in the day, but this increases the probability of predatiOn. The optimal mean gam mimmizes the total mortality. It is shown that as the amount .of ~ood that is required per day increases, the probabilty of starvation does not necessanly mcrease, and may actually decrease. This result arises because as the food requirement increases, the animal increases its predation risk in order to avoid starvation.. !he re~ults suggest th~t it is inappropriate to argue that food alone or predation alone hmits the Size of a populatiOn when there is a strong interaction between them. Furthermore the number of animals that die from starvation may not provide a reliable indication of the importance of food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.