The mechanism of thermally activated delayed fluorescence (TADF) in dendrimers is not clear. We report that fully‐conjugated or fully‐nonconjugated structures cause unwanted degenerate excited states due to multiple identical dendrons, which limit their TADF efficiency. We have synthesized asymmetrical “half‐dendronized” and “half‐dendronized‐half‐encapsulated” emitters. By eliminating degenerate excited states, the triplet locally excited state is ≥0.3 eV above the lowest triplet charge‐transfer state, assuring a solely thermal equilibrium route for an effective spin‐flip process. The isolated encapsulating tricarbazole unit can protect the TADF unit, reducing nonradiative decay and enhancing TADF performance. Non‐doped solution‐processed devices reach a high external quantum efficiency (EQEmax) of 24.0 % (65.9 cd A−1, 59.2 lm W−1) with CIE coordinates of (0.24, 0.45) with a low efficiency roll‐off and EQEs of 23.6 % and 21.3 % at 100 and 500 cd m−2.
The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with 'electronically innocent' bridges between the donor units. Using a phenothiazinedibenzothiophene-S,S-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analysis shows that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their non-bridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.
The mechanism of thermally activated delayed fluorescence (TADF) in dendrimers is not clear. We report that fully‐conjugated or fully‐nonconjugated structures cause unwanted degenerate excited states due to multiple identical dendrons, which limit their TADF efficiency. We have synthesized asymmetrical “half‐dendronized” and “half‐dendronized‐half‐encapsulated” emitters. By eliminating degenerate excited states, the triplet locally excited state is ≥0.3 eV above the lowest triplet charge‐transfer state, assuring a solely thermal equilibrium route for an effective spin‐flip process. The isolated encapsulating tricarbazole unit can protect the TADF unit, reducing nonradiative decay and enhancing TADF performance. Non‐doped solution‐processed devices reach a high external quantum efficiency (EQEmax) of 24.0 % (65.9 cd A−1, 59.2 lm W−1) with CIE coordinates of (0.24, 0.45) with a low efficiency roll‐off and EQEs of 23.6 % and 21.3 % at 100 and 500 cd m−2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.