During meiosis in Saccharomyces cerevisiae, DNA replication occurs 1. 5 to 2 hours before recombination initiates by DNA double-strand break formation. We show that replication and recombination initiation are directly linked. Blocking meiotic replication prevented double-strand break formation in a replication-checkpoint-independent manner, and delaying replication of a chromosome segment specifically delayed break formation in that segment. Consequently, the time between replication and break formation was held constant in all regions. We suggest that double-strand break formation occurs as part of a process initiated by DNA replication, which thus determines when meiotic recombination initiates on a regional rather than a cell-wide basis.
Homologous recombination (HR) deficient cells are sensitive to methyl methanesulfonate (MMS). HR is usually involved in the repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae implying that MMS somehow induces DSBs in vivo. Indeed there is evidence, based on pulsed-field gel electrophoresis (PFGE), that MMS causes DNA fragmentation. However, the mechanism through which MMS induces DSBs has not been demonstrated. Here, we show that DNA fragmentation following MMS treatment, and detected by PFGE is not the consequence of production of cellular DSBs. Instead, DSBs seen following MMS treatment are produced during sample preparation where heat-labile methylated DNA is converted into DSBs. Furthermore, we show that the repair of MMS-induced heat-labile damage requires the base excision repair protein XRCC1, and is independent of HR in both S.cerevisiae and mammalian cells. We speculate that the reason for recombination-deficient cells being sensitive to MMS is due to the role of HR in repair of MMS-induced stalled replication forks, rather than for repair of cellular DSBs or heat-labile damage.
Meiotic recombination occurs more frequently in some regions of the eukaryotic genome than in others, with variations of several orders of magnitude observed in frequencies of meiotic exchange per unit physical distance. This article reviews what is known abut meiotic recombination hotspots loci, or regions that display a greater than average frequency of meiotic exchange. Hotspots have been most intensively studied in Saccharomyces cerevisiae, which is a major focus of this article. Also reviewed is the current state of knowledge regarding hotspots in other fungi, in maize, in nematodes, in mice, and in humans.
We have studied the repair of a DNA-DSB created by the VMA1-derived endonuclease in mutants that have different levels of Spo11-DSBs: WT (sae2), few (hop1), and none (spo11-Y135F). In spo11-Y135F and hop1 cells, intrachromosomal repair is more frequent than in WT and sae2 cells. In spo11-Y135F cells there was no chromosome pairing or synapsis and a faster turnover of resected DNA. Compared to WT and sae2 cells, spo11-Y135F and hop1 cells have a greater proportion of long resection tracts. The data suggest that high levels of Spo11-DSBs are required for normal regulation of resection, even at a DSB created by another protein. WT control over resection could be important for directing repair to be interchromosomal, increasing the chance of creating interhomolog connections essential to meiotic segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.