Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.Peer reviewe
This study is a part of a research program that investigates the potential of RapidEye (RE) satellite data for timely updates of forest cover databases to reflect both regular management activities and sudden changes due to bark beetle and storms. Applied here in the Bavarian Forest National Park (BFNP) in southeastern Germany, this approach detected even small changes between two data takes, thus, facilitating documentation of regular management activities. In the case of a sudden event, forest cover databases also serve as a baseline for damage assessment. A storm event, which occurred on 13 July, 2011, provided the opportunity to assess the effectiveness of multi-seasonal RE data for rapid damage assessment. Images of sufficient quality (<20% cloud cover) acquired one day before the storm event were used as a baseline. Persistent cloud cover meant that the first "after event" image of sufficient quality was acquired six weeks later, on 22 August, 2011. Aerial images (AI) for the official damage assessment done by the BFNP administration were acquired on that same day. The RE analysis for damage assessment was completed two weeks after the post-event data take with an overall accuracy of 96% and a kappa coefficient of 0.86. In contrast, the official aerial image survey from the BFNP OPEN ACCESSForests 2014, 5 1285 was first released in late November, eleven weeks later. Comparison of the results from the two analyses showed a difference in the detected amount of forest cover loss of only 3%. The estimated cost of the RE approach was four times less than that of the standard digital AI procedure employed by the BFNP.
Nowadays, the image of the forest in Germany is changing from monoculture areas to very mixed forests, where individual stands are no longer clearly visible. The objective of this study was to examine the use of remotely sensed data at enterprise level for pre-stratification and sample plot allocation in the planning stage of forest inventories in a very heterogeneous forest. On the basis of RapidEye satellite data and object-based image analysis, a stratified segment-based non-permanent sampling design was developed and evaluated against the results of a permanent systematic sampling design. The relative efficiency (RE) was calculated based on variance estimators for simple random sampling and stratified random sampling for the variable timber volume [m 3 /ha]. By stratification of the sample designs, we achieved an RE of 1.25 for the systematic sampling and 1.34 with the segment-based sampling design. Based on a targeted standard error of 4.6%, the sampling designs were compared with respect to the required sample size. The stratified segment-based sampling design reduced the number of sample plots compared to the systematic sampling design by 28%. Furthermore, it was shown that the possible reduction of sampling plots leads to a cost saving of 21%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.