The primate corticospinal tract (CST), the major descending pathway mediating voluntary hand movements, comprises nine or more functional subdivisions. The role of subcomponents other than that from primary motor cortex, however, is not well understood. We have previously shown that following a cervical dorsal rhizotomy (Darian-Smith et al., 2013), CST projections originating from primary somatosensory (S1) and motor (M1) cortex responded quite differently to injury. Terminal projections from the S1 (areas 3b/1/2) shrank to Ͻ60% of the contralateral side, while M1 CST projections remained robust or expanded (Ͼ110%). Here, we asked what happens when a central lesion is added to the equation, to better simulate clinical injury. Monkeys (n ϭ 6) received either a unilateral (1) dorsal root lesion (DRL), (2) or a combined DRL/dorsal column lesion (DRL/DCL), or (3) a DRL/DCL where the DCL was made 4 months following the initial DRL. Electrophysiological recordings were made in S1 4 months postlesion in the first two groups, and 6 weeks after the DCL in the third lesion group, to identify the reorganized region of D1-D3 (thumb, index finger, and middle finger) representation. Anterograde tracers were then injected bilaterally to assess spinal terminal labeling. Remarkably, in all DRL/DCL animals, terminal projections from the S1 and M1 extended bilaterally and caudally well beyond terminal territories in normal animals or following a DRL. These data were highly significant. Extensive sprouting from the S1 CST has not been reported previously, and these data raise important questions about S1 CST involvement in recovery following spinal injury.
The corticospinal tract (CST) forms the major descending pathway mediating voluntary hand movements in primates, and originates from ∼nine cortical subdivisions in the macaque. While the terminals of spared motor CST axons are known to sprout locally within the cord in response to spinal injury, little is known about the response of the other CST subcomponents. We previously reported that following a cervical dorsal root lesion (DRL), the primary somatosensory (S1) CST terminal projection retracts to 60% of its original terminal domain, while the primary motor (M1) projection remains robust (Darian-Smith et al., J. Neurosci., 2013). In contrast, when a dorsal column lesion (DCL) is added to the DRL, the S1 CST, in addition to the M1 CST, extends its terminal projections bilaterally and caudally, well beyond normal range (Darian-Smith et al., J. Neurosci., 2014). Are these dramatic responses linked entirely to the inclusion of a CNS injury (i.e., DCL), or do the two components summate or interact? We addressed this directly, by comparing data from monkeys that received a unilateral DCL alone, with those that received either a DRL or a combined DRL/DCL. Approximately 4 months post-lesion, the S1 hand region was mapped electrophysiologically, and anterograde tracers were injected bilaterally into the region deprived of normal input, to assess spinal terminal labeling. Using multifactorial analyses, we show that following a DCL alone (i.e., cuneate fasciculus lesion), the S1 and M1 CSTs also sprout significantly and bilaterally beyond normal range, with a termination pattern suggesting some interaction between the peripheral and central lesions.
The corticospinal tract in the macaque and human forms the major descending pathway involved in volitional hand movements. Following a unilateral cervical dorsal root lesion, where sensory input to the first three digits (D1–D3) is removed, monkeys are initially unable to perform a grasp retrieval task requiring sensory feedback. Over several months, however, they recover much of this capability. Past studies in our lab have identified a number of changes in the afferent circuitry that occur as function returns, but do changes to the efferent pathways also contribute to compensatory recovery? In this study we examined the role of the corticospinal tract in pathway reorganization following a unilateral cervical dorsal rhizotomy. Several months after animals received a lesion, the corticospinal pathways originating in the primary somatosensory and motor cortex were labeled and terminal distribution patterns on the two sides of the cervical cord compared. Tracers were injected only into the region of D1–D3 representation (identified electrophysiologically). We observed a strikingly different terminal labeling pattern post-lesion for projections originating in the somatosensory versus motor cortex. The terminal territory from the somatosensory cortex was significantly smaller compared with the contralateral side (area mean = 0.30 vs 0.55mm2), indicating retraction or atrophy of terminals. In contrast, the terminal territory from the motor cortex did not shrink and in 3 of 4 animals, aberrant terminal label was observed in the dorsal horn ipsilateral to the lesion, indicating sprouting. These differences suggest that cortical regions play a different role in post-injury recovery.
Meissner's corpuscles (MCs) are cutaneous mechanoreceptors found in glabrous skin and are exquisitely sensitive to light touch. Along with other receptors, they provide continuous sensory feedback that informs the execution of fine manual behaviors. Following cervical spinal deafferentation injuries, hand use can be initially severely impaired, but substantial recovery occurs over many weeks, even when ~95% of the original input is permanently lost. While most SCI research focuses on central neural pathway responses, little is known about the role of peripheral receptors in facilitating recovery. We begin to address this by asking the following: (1) What is the normal pattern of MCs in the distal pads of all five digits in the macaque monkey (with hands similar to humans)? (2) What happens to these receptors 4–5 months following either a dorsal column lesion (DCL) or a combined dorsal root/dorsal column lesion (DRL/DCL), when functional recovery is largely complete? (3) What happens chronically, 12–14 months later? Our findings show that in normal monkeys, MCs are densest in the distal pads of the opposing thumb and index finger, with the greatest concentration on the thumb. This reflects a close functional relationship between receptor density and precision grip. At 4–5 months post‐injury, there was a (~30%) loss of MCs on the deafferented digits of the injured hand compared with the contralateral side. However, 12–14 months after a DRL/DCL, receptor densities had returned to normal levels. Our findings indicate a complex peripheral response and highlight the importance of the periphery in shaping central changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.