Of all the commercially-available amino acid derivatives for solid phase peptide synthesis, none has a greater abundance of sidechain protection diversity than cysteine. The high reactivity of the cysteine thiol necessitates its attenuation during peptide construction. Moreover, the propensity of cysteine residues within a peptide or protein sequence to form disulfide connectivity allows the opportunity for the peptide chemist to install these disulfides iteratively as a post-synthetic manipulation through the judicious placement of orthogonal pairs of cysteine S-protection within the peptide's architecture. It is important to continuously discover new vectors of deprotection for these different blocking protocol in order to achieve the highest degree of orthogonality between the removal of one species in the presence of another. We report here a complete investigation of the scope and limitations of the deprotective potential of 2,2′-dithiobis(5-nitropyridine) (DTNP) on a selection of commercially-available Cys S-protecting groups. The gentle conditions of DTNP in a TFA solvent system show a remarkable ability to deprotect some cysteine blocking functionality traditionally removable only by more harsh or forcing conditions. Beyond illustrating the deprotective ability of this reagent cocktail within a cysteine-containing peptide sequence, the utility of this method was further demonstrated through iterative disulfide formation in oxytocin and apamin test peptides. It is shown that this methodology has high potential as a stand-alone cysteine deprotection technique or in further manipulation of disulfide architecture within a more complex cysteine-containing peptide template.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.