<p>In May 2007, the INSPIRE directive established the path towards creating the European Spatial Data Infrastructure (ESDI). While the Joint Research Centre (JRC) defined a set of detailed implementation guidelines, the European member states determined the agencies responsible for delivering the different topics specified in the directive&#8217;s annexes. INSPIRE&#8217;s goal was - and still is - to organize and share Europe&#8217;s data supporting environmental policies and actions. However, the way that INSPIRE was defined limited contributions to the public sector, and limited topics to those specifically listed in its annexes. Technical challenges and a lack of appropriate tools have impeded INSPIRE from implementing its own guidelines, and even after 15 years, the dream of a continuous, consistent description of Europe&#8217;s environment has still not completely materialized. We should apply the lessons learnt in INSPIRE when we build the Green Deal Data Space (GDDS). To create the GDDS, we should start with ESDI (the European Spatial Data Infrastructure), but also engage and align with the ongoing preparatory actions for data spaces (e.g., for green deal and agriculture) as well as include actors and networks that have emerged or been organized in the recent years. These include: networks of <em>in situ</em> observations (e.g. the &#160;Environmental Research Infrastructures (ENVRI) community); Citizen Science initiatives (such as the biodiversity observations integrated in the Global Biodiversity Information Facility (GBIF), or sensor communities for e.g. air quality); predictive algorithms and machine learning models and simulations based on artificial intelligence (such as the ones deployed in the European Open Science Cloud, International Data Space Association and Gaia-X; services driven both by the scientific community and the private sector); remote sensing derived products developed by the Copernicus Services. Most of these data providers have already embraced the FAIR principles and open data, providing many examples of best practice which can assist newer adopters on the path to open science. In the Horizon Europe project AD4GD (AllData4GreenDeal), we believe that, instead of trying to force data producers to adopt cumbersome new protocols, we should take advantage of the latest developments in geospatial standards and APIs. These allow loosely coupled but well documented and interlinked data sources and models in the GDDS while achieving scientifically robust integration &#160;and easy access to data in the resulting workflows. Another fundamental element will be the adoption of a common and extensible information model enabling the representation and exchange of Green Deal related data in an unambiguous manner, including vocabularies for Essential Variables to organize the observable measurements and increase the level of semantic interoperability. This will allow systems and components from different technology providers to seamless interoperate and exchange data, and to have an integrated view and access to exploit the full value of the available data. The project will validate the approach in three pilot cases: water quality and availability of Berlin lakes, biodiversity corridors in the metropolitan area of Barcelona and low cost air quality sensors in Europe. The AD4GD project is funded by the European Union under the Horizon Europe program.</p>
<p>The in-situ Earth Observation data segment is fragmented and there are significant data gaps to complete an observing system offering global datasets including series with relevant temporal depth. To identify the most urgent user needs, the InCASE project has designed a geospatial in-situ requirements database model, called G&#8209;Reqs, aimed to collect and manage requirements emerging from the Group on Earth Observations (GEO) and the Copernicus community. The expected benefits include enabling a better reuse of in-situ data, enabling geographical upscale, identifying priorities in the needs and identifying communities with a common interest to look for synergies. Starting from the Essential Variables framework, the model offers a user-centric approach based on the expression of data needs and its translation into parametrized requirements for in-situ data. A first implementation was done in a web form and was tested by the EuroGEO community represented by volunteering pilots of the EU H2020 e-shape project, and it is open to research projects, decision-makers looking for policy indicators, remote sensing agencies in need of cal/val data, services produced by commercial companies, Earth system predictive algorithms and Machine Learning modellers, etc., interested in environmental in-situ data. The usefulness of the G-reqs model will lie in its capability to collect, share and analyse requirements, detect essential datasets, gaps, and help to make recommendations to data providers via a consensus process thus promoting the discovery of fit-for-purpose in-situ datasets. The consensus process can result in agreement on recommendations to data providers for producing products that cover emerging needs of the Earth Observation users&#8217; community in terms of spatial, temporal coverage or quality target. In this context, the entire Earth Observation community of users is invited to use the G-reqs as a mechanism to document its in-situ data needs (https://g-reqs.grumets.cat). For example the in-situ networks of observation facilities (ENVRI, e.g. ELTER, GEOBON, among others) can then participate in the analysis, gap detection and recommendations for the creation of new products or modifications of the existing ones to better serve their users. With the G&#8209;reqs as a tool, the In-Situ Data Working Group in GEO can act as a forum where the in-situ data barriers and gaps are discussed and addressed. This communication will present the requirements data model and the current status of the requirements collection as well as next steps to complete the G&#8209;reqs capabilities. This work is inspired by the OSAAP (formerly NOSA) from NOAA, the World Meteorological Organization (WMO) OSCAR requirements database and the Copernicus In-Situ Component Information System (CIS<sup>2</sup>). The InCASE project is funded by the European Environment Agency (EEA) in the context of the EEA SLA on &#8220;Mainstreaming GEOSS Data Sharing and Management Principles in support of Europe&#8217;s Environment" in line with the European Strategy for Data, the Green Deal Data Space, and Destination Earth.</p>
In the field of Earth observation, the importance of in situ data was recognized by the Group on Earth Observations (GEO) in the Canberra Declaration in 2019. The GEO community focuses on three global priority engagement areas: the United Nations 2030 Agenda for Sustainable Development, the Paris Agreement, and the Sendai Framework for Disaster Risk Reduction. While efforts have been made by GEO to open and disseminate in situ data, GEO did not have a general way to capture in situ data user requirements and drive the data provider efforts to meet the goals of its three global priorities. We present a requirements data model that first formalizes the collection of user requirements motivated by user-driven needs. Then, the user requirements can be grouped by essential variable and an analysis can derive product requirements and parameters for new or existing products. The work was inspired by thematic initiatives, such as OSCAR, from WMO, OSAAP (formerly COURL and NOSA) from NOAA, and the Copernicus In Situ Component Information System. The presented solution focuses on requirements for all applications of Earth observation in situ data. We present initial developments and testing of the data model and discuss the steps that GEO should take to implement a requirements database that is connected to actual data in the GEOSS platform and propose some recommendations on how to articulate it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.