Cells commit to a new cell cycle at Start by activation of the G1 Cdk-cyclin complex which, in turn, triggers a genome-wide transcriptional wave that executes the G1/S transition. In budding yeast, the Cdc28-Cln3 complex is regulated by an ER-retention mechanism that is important for proper cell size control. We have isolated small-cell-size CDC28 mutants showing impaired retention at the ER and premature accumulation of the Cln3 cyclin in the nucleus. The differential interactome of a quintuple Cdc28(wee) mutant pinpointed Whi7, a Whi5 paralog targeted by Cdc28 that associates to the ER in a phosphorylation-dependent manner. Our results demonstrate that the Cln3 cyclin and Whi7 act in a positive feedback loop to release the G1 Cdk-cyclin complex and trigger Start once a critical size has been reached, thus uncovering a key nonlinear mechanism at the earliest known events of cell-cycle entry.
Cells sense myriad signals during G1, and a rapid response to prevent cell cycle entry is of crucial importance for proper development and adaptation. Cln3, the most upstream G1 cyclin in budding yeast, is an extremely short-lived protein subject to ubiquitination and proteasomal degradation. On the other hand, nuclear accumulation of Cln3 depends on chaperones that are also important for its degradation. However, how these processes are intertwined to control G1-cyclin fate is not well understood. Here, we show that Cln3 undergoes a challenging ubiquitination step required for both degradation and full activation. Segregase Cdc48/p97 prevents degradation of ubiquitinated Cln3, and concurrently stimulates its ER release and nuclear accumulation to trigger Start. Cdc48/p97 phosphorylation at conserved Cdk-target sites is important for recruitment of specific cofactors and, in both yeast and mammalian cells, to attain proper G1-cyclin levels and activity. Cdk-dependent modulation of Cdc48 would subjugate G1 cyclins to fast and reversible state switching, thus arresting cells promptly in G1 at developmental or environmental checkpoints, but also resuming G1 progression immediately after proliferative signals reappear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.