Adhesives are made of polymers because, unlike other materials, polymers ensure good contact between surfaces by covering asperities, and retard the fracture of adhesive joints by dissipating energy under stress. But using polymers to 'glue' together polymer gels is difficult, requiring chemical reactions, heating, pH changes, ultraviolet irradiation or an electric field. Here we show that strong, rapid adhesion between two hydrogels can be achieved at room temperature by spreading a droplet of a nanoparticle solution on one gel's surface and then bringing the other gel into contact with it. The method relies on the nanoparticles' ability to adsorb onto polymer gels and to act as connectors between polymer chains, and on the ability of polymer chains to reorganize and dissipate energy under stress when adsorbed onto nanoparticles. We demonstrate this approach by pressing together pieces of hydrogels, for approximately 30 seconds, that have the same or different chemical properties or rigidities, using various solutions of silica nanoparticles, to achieve a strong bond. Furthermore, we show that carbon nanotubes and cellulose nanocrystals that do not bond hydrogels together become adhesive when their surface chemistry is modified. To illustrate the promise of the method for biological tissues, we also glued together two cut pieces of calf's liver using a solution of silica nanoparticles. As a rapid, simple and efficient way to assemble gels or tissues, this method is desirable for many emerging technological and medical applications such as microfluidics, actuation, tissue engineering and surgery.
The synthesis and mechanical characterization of novel, tough poly(N,N-dimethylacrylamide) (PDMA)-silica hydrogel hybrids are presented to understand the role played by strong physical interactions between silica nanoparticles and the PDMA polymer on the properties of chemically cross-linked highly swollen PDMA networks. A detailed comparison of the hybrids with unmodified PDMA gels indicates that the incorporation of silica nanoparticles in the hydrogel increases the compression strength and the fracture toughness of notched samples up to an order of magnitude while increasing its modulus by a factor of 6 with a volume fraction of particles of the order of only 7%. The hybrid gels present a strain-dependent hysteresis but no permanent damage or residual strain upon unloading even after repeated cycling, a very unique property for such tough hydrogels. The reason for this exceptional increase in toughness is attributed mainly to the combined effect of breakable silica/polymer bonds and of a wide distribution of elastic chain lengths.
We studied the stress–strain relation of model dual cross-link gels having permanent cross-links and transient cross-links over an unusually wide range of extension ratios λ and strain rates ϵ̇ (or time t = (λ – 1)/ϵ̇). We propose a new analysis method and separate the stress into strain- and time-dependent terms. The strain-dependent term is derived from rubber elasticity, while the time-dependent term is due to the failure of transient cross-links and can be represented as a time-dependent shear modulus which shows the same relaxation as in small strain. The separability is applicable except for the strain stiffening regimes resulting from the finite extensibility of polymer chains. This new analysis method should have a wide applicability not only for hydrogels but also for other highly viscoelastic soft solids such as soft adhesives or living tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.