Simple SummaryThere is a renewed interest on the potential inclusion of urea in ruminant diets, reducing the contribution of vegetable protein supplements. This study was designed to evaluate the effect of replacing soybean meal with different proportions of urea in protein-rich diets for heavy fattening lambs (from 29 to 50 kg of live body weight). Our results suggest that 39% of soybean meal of such diets can be replaced with urea reducing the feeding costs without any adverse effects on feed efficiency, rumen fermentation, or carcass and meat quality. Nevertheless, urea supplementation even at levels of 1% of dry matter may trigger mild metabolic acidosis that can affect animal health in the long term.AbstractThirty-six Assaf male lambs (29.4 ± 3.10 kg body weight (BW)) were used to study the feasibility of including urea (at 0, 0.6 or 0.95% of dry matter for Control, Urea1, and Urea2 diets, respectively) in substitution of soybean meal in fattening diets. Animals were individually penned and feed intake was recorded daily. Blood samples were taken at days 35 and 63 of the experimental period to determine the acid-base status and the biochemical profile. At the end of the experiment (nine weeks), lambs were slaughtered, ruminal contents were collected and carcass and meat quality were evaluated. There were not differences (p > 0.05) among treatments in dry matter intake, animal performance, ruminal fermentation pattern, and carcass and meat parameters. Serum albumin concentration was higher and concentration of HCO3 and total CO2 in blood were lower in Urea2 compared to Urea1 and Control lambs. These results, together with the tendency to lower (p = 0.065) blood pH in this group might suggest a moderate metabolic acidosis. Partial replacement of soybean meal with urea did not impair growth rate in heavy fattening Assaf lambs (from 29 to 50 kg body weight), reduced feeding costs and had no adverse effects on feed efficiency, rumen fermentation and carcass and meat quality.
Early feed restriction of lambs may program animals to achieve reduced feed efficiency traits as a consequence of permanent mitochondrial dysfunction. The hypothesis at the background of the present study is that dietary administration of L-Carnitine (a compound that promotes the activation and transportation of fatty acids into the mitochondria) during the fattening period of early feed restricted lambs can: (a) improve the biochemical profile of early feed restricted lambs, (b) improve feed efficiency, (c) modulate the ruminal and intestinal microbiota, and (d) induce changes in the gastrointestinal mucosa, including the immune status. Twenty-two newborn male Merino lambs were raised under natural conditions but separated from the dams for 9 h daily to allow feed restriction during the suckling period. At weaning, lambs were assigned to a control group being fed ad libitum a complete pelleted diet during the fattening phase (CTRL, n = 11), whereas the second group (CARN, n = 11) received the same diet supplemented with 3 g of L-Carnitine/kg diet. The results revealed that even though L-Carnitine was absorbed, feed efficiency was not modified by dietary L-Carnitine during the fattening period (residual feed intake, p > 0.05), whereas ruminal fermentation was improved [total short-chain fatty acids (SCFAs), 113 vs. 154 mmol/l; p = 0.036]. Moreover, a trend toward increased concentration of butyrate in the ileal content (0.568 vs. 1.194 mmol/100 ml SCFA; p = 0.074) was observed. Other effects, such as reduced heart weight, lower levels of markers related to muscle metabolism or damage, improved renal function, and increased ureagenesis, were detected in the CARN group. Limited changes in the microbiota were also detected. These findings suggest that L-Carnitine may improve ruminal fermentation parameters and maintain both the balance of gut microbiota and the health of the animals. However, the improved ruminal fermentation and the consequent greater accumulation of intramuscular fat might have hidden the effects caused by the ability of dietary L-Carnitine to increase fatty acid oxidation at the mitochondrial level. This would explain the lack of effects of L-Carnitine supplementation on feed efficiency and points toward the need of testing lower doses, probably in the context of animals being fed in excess non-protein nitrogen.
Deficient management of replacement animals in the farm during early developmental windows may promote adverse programming effects on reproductive traits and subsequent transmission to the next generation. In this sense, DNA methylation profiles allow researchers to decode epigenetic regulation mechanisms in mammals and identify novel candidate genes correlated with phenotype differences in both dams and offspring. Therefore, improving knowledge in the field of epigenetics and intergenerational effects caused by prenatal and postnatal early nutritional events (e.g., feed restriction) is crucial for refining strategies dedicated to animal breeding. In this study, we determined differences in the global blood methylation patterns, biochemical profile, and metabolome of ewe lambs (F1) born from either early feed restricted dams (F0-RES) or fed ad libitum (F0-ADL). Our data show that functional categories such as those related to cellular processes, phosphorylation, nervous system, immunity response, or reproductive function were enriched significantly in the F1-RES lambs due to differences in the methylation of genes in these categories. These F1-RES lambs did not show differences in feed efficiency during the replacement period but presented higher levels of insulin and triglycerides and reduced concentration of progesterone, whereas the metabolome profile demonstrated variations in the bile acid composition when compared with the F1-ADL lambs. Taken together, all these results suggest that intergenerational effects caused by early feed restriction of dams (F0) may persist in the F1 female lambs with negative consequences on genes involved in cellular processes and reproductive traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.