IL-10–producing B cells, also known as regulatory B cells (Bregs), play a key role in controlling autoimmunity. In this study, we report that chimeric mice specifically lacking IL-10–producing B cells (IL-10−/−B cell) developed an exacerbated arthritis compared with chimeric wild-type (WT) B cell mice. A significant decrease in the absolute numbers of Foxp3 regulatory T cells (Tregs), in their expression level of Foxp3, and a marked increase in inflammatory Th1 and Th17 cells were detected in IL-10−/− B cell mice compared with WT B cell mice. Reconstitution of arthritic B cell deficient (μMT) mice with different B cell subsets revealed that the ability to modulate Treg frequencies in vivo is exclusively restricted to transitional 2 marginal zone precursor Bregs. Moreover, transfer of WT transitional 2 marginal zone precursor Bregs to arthritic IL-10−/− mice increased Foxp3+ Tregs and reduced Th1 and Th17 cell frequencies to levels measured in arthritic WT mice and inhibited inflammation. In vitro, IL-10+/+ B cells established longer contact times with arthritogenic CD4+CD25− T cells compared with IL-10−/− B cells in response to Ag stimulation, and using the same culture conditions, we observed upregulation of Foxp3 on CD4+ T cells. Thus, IL-10–producing B cells restrain inflammation by promoting differentiation of immunoregulatory over proinflammatory T cells.
ObjectiveGluten-free diet (GFD) is the only management for coeliac disease (CD). Available methods to assess GFD compliance are insufficiently sensitive to detect occasional dietary transgressions that may cause gut mucosal damage. We aimed to develop a method to determine gluten intake and monitor GFD compliance in patients with CD and to evaluate its correlation with mucosal damage.DesignUrine samples of 76 healthy subjects and 58 patients with CD subjected to different gluten dietary conditions were collected. A lateral flow test (LFT) with the highly sensitive and specific G12 monoclonal antibody for the most dominant gluten immunogenic peptides (GIP) and a LFT reader were used to quantify GIP in solid-phase extracted urines.ResultsGIP were detectable in concentrated urines from healthy individuals previously subjected to GFD as early as 4–6 h after single gluten intake, and remained detectable for 1–2 days. The urine assay revealed infringement of the GFD in about 50% of the patients. Analysis of duodenal biopsies revealed that most of patients with CD (89%) with no villous atrophy had no detectable GIP in urine, while all patients with quantifiable GIP in urine showed incomplete intestinal mucosa recovery.ConclusionGIP are detected in urine after gluten consumption, enabling a new and non-invasive method to monitor GFD compliance and transgressions. The method was sensitive, specific and simple enough to be convenient for clinical monitoring of patients with CD as well as for basic and clinical research applications including drug development.Trial registration numberNCT02344758.
Antigen-presenting molecules vary between individuals of the same species, making it more difficult for pathogens to evade immune recognition and spread through the whole population. As a result of this genetic diversity, transplants between individuals are recognized as foreign and are rejected. This alloreactivity turns placental viviparity into a major immunological challenge. The maternal immune system has to balance the opposing needs of maintaining robust immune reactivity to protect both mother and fetus from invading pathogens, while at the same time tolerating highly immunogenic paternal alloantigens in order to sustain fetal integrity. Regulatory T cells are responsible for the establishment of tolerance by modulating the immune response, and uterine natural killer cells direct placentation by controlling trophoblast invasion. A variety of other cell types, including decidual stromal cells, dendritic cells, and immunomodulatory multipotent mesenchymal stromal cells, are found at the fetal-maternal interface. These cells conspire to establish a suitable environment for fetal development without compromising systemic immunity. Defects in any of these components can lead to gestational failure despite successful fertilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.