We study the self-assembly of novel azobenzene-based chiral surfactants at the air/water interface, and find that while the pure enantiomers lack the ability to organize in ordered mesophases, the racemic mixture spontaneously forms a hexatic phase at low lateral pressures, which we detect by means of Brewster angle microscopy. This work provides a unique example of heterochiral recognition in which the racemic monolayer is not only condensed with respect to the pure enantiomers, but causes an ordered mesophase to form. Although hexatic order vanishes at high surface pressures, long-range orientational order is regained for all compositions upon monolayer collapse, which proceeds through the formation of birefringent trilayers with a well-defined lateral microstructure, as revealed by atomic force microscopy.
We present experiments in which the laterally confined flow of a surfactant film driven by controlled surface tension gradients causes the subtended liquid layer to self-organize into an inner upstream microduct surrounded by the downstream flow. The anomalous interfacial flow profiles and the concomitant backflow are a result of the feedback between two-dimensional and three-dimensional microfluidics realized during flow in open microchannels. Bulk and surface particle image velocimetry data combined with an interfacial hydrodynamics model explain the dependence of the observed phenomena on channel geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.