SUMMARYGastric cancer can be divided into intestinal type and diffuse type that differ substantially in epidemiology and pathogenesis. The most important aetiological factor associated both with intestinal and diffuse gastric cancer, is Helicobacter pylori. Exposure of gastric epithelial cells to H. pylori results in an inflammatory reaction with the production of reactive oxygen species and nitric oxide that, in turn, deaminates DNA causing mutations. The complex interplay between H. pylori strain, inflammation and host characteristics may directly promote diffuse type gastric cancer or induce a cascade of morphological events, i.e. atrophy, intestinal metaplasia and dysplasia, finally leading to intestinal type gastric cancer. Two mechanisms, genetic and epigenetic have been held to play a role in the molecular alterations underlying gastric carcinogenesis. The former, comprising changes in the DNA sequence, is irreversible; the latter, involving DNA methylation, is potentially reversible by eliminating the triggering agents. If H. pylori is eradicated before development of stable mutations, the risk of gastric cancer will likely be prevented. Thus, eradication of H. pylori might immediately reduce the risk of diffuse type gastric cancer, whereas prevention of intestinal type gastric cancer may be less effective if patients are treated later in the evolution of the carcinogenic process.
In the central nervous system glial-derived S100B protein has been associated with inflammation via nitric oxide (NO) production. As the role of enteroglial cells in inflammatory bowel disease has been poorly investigated in humans, we evaluated the association of S100B and NO production in ulcerative colitis (UC). S100B mRNA and protein expression, inducible NO synthase (iNOS) expression, and NO production were evaluated in rectal biopsies from 30 controls and 35 UC patients. To verify the correlation between S100B and NO production, biopsies were exposed to S100B, in the presence or absence of specific receptor for advanced glycation end-products (RAGE) blocking antibody, to measure iNOS expression and nitrite production. S100B and iNOS expression were evaluated after incubation of biopsies with lipopolysaccharides (LPS) + interferon-gamma (IFN-c) in the presence of anti-RAGE or anti-S100B antibodies or budesonide. S100B mRNA and protein expression, iNOS expression and NO production were significantly higher in the rectal mucosa of patients compared to that of controls. Exogenous S100B induced a significant increase in both iNOS expression and NO production in controls and UC patients; this increase was inhibited by specific anti-RAGE blocking antibody. Incubation with LPS + IFN-c induced a significant increase in S100B mRNA and protein expression, together with increased iNOS expression and NO production. LPS + IFN-c-induced S100B up-regulation was not affected by budesonide, while iNOS expression and NO production were significantly inhibited by both specific anti-RAGE and anti-S100B blocking antibodies. Enteroglial-derived S100B up-regulation in UC participates in NO production, involving RAGE in a steroid insensitive pathway.
The harmful use of alcohol is a worldwide problem. It has been estimated that alcohol abuse represents the world's third largest risk factor for disease and disability; it is a causal factor of 60 types of diseases and injuries and a concurrent cause of at least 200 others. Liver is the main organ responsible for metabolizing ethanol, thus it has been considered for long time the major victim of the harmful use of alcohol. Ethanol and its bioactive products, acetaldehyde-acetate, fatty acid ethanol esters, ethanol-protein adducts, have been regarded as hepatotoxins that directly and indirectly exert their toxic effect on the liver. A similar mechanism has been postulated for the alcohol-related pancreatic damage. Alcohol and its metabolites directly injure acinar cells and elicit stellate cells to produce and deposit extracellular matrix thus triggering the "necrosis-fibrosis" sequence that finally leads to atrophy and fibrosis, morphological hallmarks of alcoholic chronic pancreatitis. Even if less attention has been paid to the upper and lower gastrointestinal tract, ethanol produces harmful effects by inducing: (1) direct damaging of the mucosa of the esophagus and stomach; (2) modification of the sphincterial pressure and impairment of motility; and (3) alteration of gastric acid output. In the intestine, ethanol can damage the intestinal mucosa directly or indirectly by altering the resident microflora and impairing the mucosal immune system. Notably, disruption of the intestinal mucosal barrier of the small and large intestine contribute to liver damage. This review summarizes the most clinically relevant alcohol-related diseases of the digestive tract focusing on the pathogenic mechanisms by which ethanol damages liver, pancreas and gastrointestinal tract.
Octreotide is a safe drug that may be useful to control the recurrent gastrointestinal bleeding due to acquired angiodysplasia and watermelon stomach, especially in patients who are not candidates for surgery due to old age and/or concomitant disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.