ObjectiveA decade of microbiome studies has linked IBD to an alteration in the gut microbial community of genetically predisposed subjects. However, existing profiles of gut microbiome dysbiosis in adult IBD patients are inconsistent among published studies, and did not allow the identification of microbial signatures for CD and UC. Here, we aimed to compare the faecal microbiome of CD with patients having UC and with non-IBD subjects in a longitudinal study.DesignWe analysed a cohort of 2045 non-IBD and IBD faecal samples from four countries (Spain, Belgium, the UK and Germany), applied a 16S rRNA sequencing approach and analysed a total dataset of 115 million sequences.ResultsIn the Spanish cohort, dysbiosis was found significantly greater in patients with CD than with UC, as shown by a more reduced diversity, a less stable microbial community and eight microbial groups were proposed as a specific microbial signature for CD. Tested against the whole cohort, the signature achieved an overall sensitivity of 80% and a specificity of 94%, 94%, 89% and 91% for the detection of CD versus healthy controls, patients with anorexia, IBS and UC, respectively.ConclusionsAlthough UC and CD share many epidemiologic, immunologic, therapeutic and clinical features, our results showed that they are two distinct subtypes of IBD at the microbiome level. For the first time, we are proposing microbiomarkers to discriminate between CD and non-CD independently of geographical regions.
From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002). At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016). Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04). The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.
The pathophysiology of irritable bowel syndrome (IBS) remains unclear. Here we investigated the microbiome of a large cohort of patients to identify specific signatures for IBS subtypes. We examined the microbiome of 113 patients with IBS and 66 healthy controls. A subset of these participants provided two samples one month apart. We analyzed a total of 273 fecal samples, generating more than 20 million 16S rRNA sequences. In patients with IBS, a significantly lower microbial diversity was associated with a lower relative abundance of butyrate-producing bacteria (P = 0.002; q < 0.06), in particular in patients with IBS-D and IBS-M. IBS patients who did not receive any treatment harboured a lower abundance of Methanobacteria compared to healthy controls (P = 0.005; q = 0.05). Furthermore, significant correlations were observed between several bacterial taxa and sensation of flatulence and abdominal pain (P < 0.05). Altogether, our findings showed that IBS-M and IBS-D patients are characterized by a reduction of butyrate producing bacteria, known to improve intestinal barrier function, and a reduction of methane producing microorganisms a major mechanism of hydrogen disposal in the human colon, which could explain excess of abdominal gas in IBS.
BackgroundThe microbial community analysis of stools requires optimised and standardised protocols for their collection, homogenisation, microbial disruption and nucleic acid extraction. Here we examined whether different layers of the stool are equally representative of the microbiome. We also studied the effect of stool water content, which typically increases in diarrhoeic samples, and of a microbial disruption method on DNA integrity and, therefore, on providing an unbiased microbial composition analysis.ResultsWe collected faecal samples from healthy subjects and performed microbial composition analysis by pyrosequencing the V4 region of the 16S rRNA gene. To examine the effect of stool structure, we compared the inner and outer layers of the samples (N = 8). Both layers presented minor differences in microbial composition and abundance at the species level. These differences did not significantly bias the microbial community specific to an individual. To evaluate the effect of stool water content and bead-beating, we used various volumes of a water-based salt solution and beads of distinct weights before nucleic acid extraction (N = 4). The different proportions of water did not affect the UniFrac-based clustering of samples from the same subject However, the use or omission of a bead-beating step produced different proportions of Gram-positive and Gram-negative bacteria and significant changes in the UniFrac-based clustering of the samples.ConclusionThe degree of hydration and homogenisation of faecal samples do not significantly alter their microbial community composition. However, the use of bead-beating is critical for the proper detection of Gram-positive bacteria such as Blautia and Bifidobacterium.
Healthy 1 st degree IBD relatives Pre-UC Post-UC Matched HC Follow-up Proteolytic activity Microbiotahumanized mice Proteolytic activity Low-grade colonic inflammation Fecal proteolytic activity as early biomarker Microbiota composition BACKGROUND & AIMS: Altered gut microbiota composition and function have been associated with inflammatory bowel diseases, including ulcerative colitis (UC), but the causality and mechanisms remain unknown. METHODS: We applied 16S ribosomal RNA gene sequencing, shotgun metagenomic sequencing, in vitro functional assays, and gnotobiotic colonizations to define the microbial composition and function in fecal samples obtained from a cohort of healthy individuals at risk for inflammatory bowel diseases (pre-UC) who later developed UC (post-UC) and matched healthy control individuals (HCs). RESULTS: Microbiota composition of post-UC samples was different from HC and pre-UC samples; however, functional analysis showed increased fecal proteolytic and elastase activity before UC onset. Metagenomics identified more than 22,000 gene families that were significantly different between HC, pre-UC, and post-UC samples. Of these, 237 related to proteases and peptidases, suggesting a bacterial component to the pre-UC proteolytic signature. Elastase activity inversely correlated with the relative abundance of Adlercreutzia and other potentially beneficial taxa and directly correlated with known proteolytic taxa, such as Bacteroides vulgatus. High elastase activity was confirmed in Bacteroides isolates from fecal samples. The bacterial contribution and functional significance of the proteolytic signature were investigated in germ-free adult mice and in dams colonized with HC, pre-UC, or post-UC microbiota. Mice colonized with or born from pre-UC-colonized dams developed higher fecal proteolytic activity and an inflammatory immune tone compared with HC-colonized mice. CONCLU-SIONS: We have identified increased fecal proteolytic activity that precedes the clinical diagnosis of UC and associates with gut microbiota changes. This proteolytic signature may constitute a noninvasive biomarker of inflammation to monitor at-risk populations that can be targeted therapeutically with antiproteases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.