SummaryData analysis workflows in many scientific domains have become increasingly complex and flexible. To assess the impact of this flexibility on functional magnetic resonance imaging (fMRI) results, the same dataset was independently analyzed by 70 teams, testing nine ex-ante hypotheses. The flexibility of analytic approaches is exemplified by the fact that no two teams chose identical workflows to analyze the data. This flexibility resulted in sizeable variation in hypothesis test results, even for teams whose statistical maps were highly correlated at intermediate stages of their analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Importantly, meta-analytic approaches that aggregated information across teams yielded significant consensus in activated regions across teams. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset. Our findings show that analytic flexibility can have substantial effects on scientific conclusions, and demonstrate factors related to variability in fMRI. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for multiple analyses of the same data. Potential approaches to mitigate issues related to analytical variability are discussed.
Muscle contractions are associated with a decrease in beta oscillatory activity, known as movement-related beta desynchronization (MRBD). Older adults exhibit a MRBD of greater amplitude compared to their younger counterparts, even though their beta power remains higher both at rest and during muscle contractions. Further, a modulation in MRBD has been observed during sustained and dynamic pinch contractions, whereby beta activity during periods of steady contraction following a dynamic contraction is elevated. However, how the modulation of MRBD is affected by aging has remained an open question. In the present work, we investigated the effect of aging on the modulation of beta oscillations and their putative link with motor performance. We collected magnetoencephalography (MEG) data from younger and older adults during a resting-state period and motor handgrip paradigms, which included sustained and dynamic contractions, to quantify spontaneous and motor-related beta oscillatory activity. Beta power at rest was found to be significantly increased in the motor cortex of older adults. During dynamic hand contractions, MRBD was more pronounced in older participants in frontal, premotor and motor brain regions. These brain areas also exhibited age-related decreases in cortical thickness; however, the magnitude of MRBD and cortical thickness were not found to be associated after controlling for age. During sustained hand contractions, MRBD exhibited a decrease in magnitude compared to dynamic contraction periods in both groups and did not show age-related differences. This suggests that the amplitude change in MRBD between dynamic and sustained contractions is larger in older compared to younger adults. We further probed for a relationship between beta oscillations and motor behavior and found that greater MRBD in primary motor cortices was related to degraded motor performance beyond age, but our results suggested that age-related differences in beta oscillations were not predictive of motor performance.
Human brain connectivity yields significant potential as a noninvasive biomarker. Several studies have used fMRI-based connectivity fingerprinting to characterize individual patterns of brain activity. However, it is not clear whether these patterns mainly reflect neural activity or the effect of physiological and motion processes. To answer this question, we capitalize on a large data sample from the Human Connectome Project and rigorously investigate the contribution of the aforementioned processes on functional connectivity (FC) and time-varying FC, as well as their contribution to subject identifiability. We find that head motion, as well as heart rate and breathing fluctuations, induce artifactual connectivity within distinct resting-state networks and that they correlate with recurrent patterns in time-varying FC. Even though the spatiotemporal signatures of these processes yield above-chance levels in subject identifiability, removing their effects at the preprocessing stage improves identifiability, suggesting a neural component underpinning the inter-individual differences in connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.