The relative hydrophilicity at the interface of a nanoparticle was measured utilizing electron paramagnetic resonance (EPR) spectroscopy. The supramolecular structure was assembled from spin-labeled peptide amphiphiles (PA) derived from N-carboxy anhydrides (NCA). Cyanuric chloride, or 2,4,6-trichloro-1,3,5-triazine (TCT), was used as a modular platform to synthesize the spin-labeled, lipidmimetic macroinitiator used for the ring-opening polymerization of γ-benzyl-L-glutamic acid NCA to produce polyglutamate-b-dodecanethiol 2 . Through static and dynamic light scattering, as well as transmission electron microscopy, PAs with DP of 50 and 17 were shown to assemble into stable nanoparticles with an average hydrodynamic radius of 117 and 84 nm, respectively. Continuous wave EPR spectroscopy revealed that the mobility parameter (h −1 /h 0 ) and 2A iso of the nitroxide radical increased with increasing pH, in concert with the deprotonation of the PE side chains and associated helix−coil transition. These results are consistent with an increase in the relative hydration and polarity at the nanoparticle interface, which would be dependent on the secondary structure of the polypeptide. This research suggests that a pH stimulus could be used to facilitate water diffusion through the membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.