Slab retreat, slab tearing and interactions of slabs are first-order drivers of the deformation of the overriding lithosphere. An independent description of the tectonic evolution of the back-arc and peripheral regions is a pre-requisite to test the proposed conceptual, analogue and numerical models of these complex dynamics in 3-D. We propose here a new series of detailed kinematics and tectonic reconstructions from 35 Ma to the Present shedding light on the driving mechanisms of back-arc rifting in the Mediterranean where several back-arc basins all started to form in the Oligocene. The step-by-step backward reconstructions lead to an initial situation 35 Ma ago with two subduction zones with opposite direction, below the AlKaPeCa block (i.e. belonging to the Alboran, Kabylies, Peloritani, Calabrian internal zones). Extension directions are quite variable and extension rates in these basins are high compared to the Africa-Eurasia convergence velocity. The highest rates are found in the Western Mediterranean, the Liguro-Provençal, Alboran and Tyrrhenian basins. These reconstructions are based on shortening rates in the peripheral mountain belts, extension rates in the basins, paleomagnetic rotations, pressure-temperature-time paths of metamorphic complexes within the internal zones of orogens, and kinematics of the large bounding plates. Results allow visualizing the interactions between the Alps, Apennines, Pyrenean-Cantabrian belt, Betic Cordillera and Rif, as well as back-arc basins. These back-arc basins formed at the emplacement of mountain belts with superimposed volcanic arcs, thus with thick, hot and weak crusts explaining the formation of metamorphic core complexes and the exhumation of large portions of lower crustal domains during rifting. They emphasize the role of transfer faults zones accommodating differential rates of retreat above slab tears and their relations with magmatism. Several transfer zones are identified, separating four different kinematic domains, the largest one being the Catalan-Balearic-Sicily Transfer Zone. Their integration in the wider Mediterranean realm and a comparison of motion paths calculated in several kinematic frameworks with mantle fabric shows that fast slab retreat was the main driver of back-arc extension in this region and that large-scale convection was a subsidiary driver for the pre-8 Ma period, though it became dominant afterward. Slab retreat and back-arc extension was mostly NW-SE until ∼ 20 Ma and the docking of the AlKaPeCa continental blocks along the northern margin of Africa induced a slab detachment that propagated eastward and westward, thus inducing a change in the direction of extension from NW-SE to E-W. Fast slab retreat between 32 and 8 Ma and induced asthenospheric flow have prevented the transmission of the horizontal compression due to Africa-Eurasia convergence from Africa to Eurasia and favored instead upper-plate extension driven by slab retreat. Once slab retreat had slowed down in the Late Miocene, this N-S compression was felt and recorded again from the High Atlas to the Paris Basin.
Slab tearing induces localized deformations in the overriding plates of subduction zones and transfer zones accommodating differential retreat. Because the space available for retreating slabs is limited in the Mediterranean realm, slab tearing during retreat has been a major ingredient of the evolution of this region since the end of the Eocene. The association of detailed seismic tomographic models and extensive field observations makes the Mediterranean an ideal natural laboratory to study these transfer zones. We review in this paper the various structures accommodating differential retreat in the crust from the Alboran Sea to the Aegean-Anatolian region and discuss them with the help of 3D numerical models. Simple, archetypal, crustal-scale strike-slip faults are in fact rare in these contexts above slab tears. Transfer zones are in general instead wide deformation zones, from several tens to several hundred kilometers. A partitioning of deformation is observed between the upper and the lower crust with low-angle extensional shear zones at depth and complex association of transtensional basins at the surface. In the Western Mediterranean, between the Gulf of Lion and the Valencia basin, transtensional strike-slip faults are associated with syn-rift basins and lower crustal domes elongated in the direction of retreat (a-type domes), associated with massive magmatic intrusions in the lower crust and volcanism at the surface. On the northern side of the Alboran Sea, wide E-W trending strike-slip zones show partitioned thrusting and strike-slip faulting in the external zones of the Betics, and E-W trending metamorphic core complexes in the internal zones, parallel to the main retreat direction. On the opposite, the southern margin of the Alboran Sea shows short en-échelon strike-slip faults. In the Aegean-Anatolian region two main tear faults with different degrees of maturity are observed. Western Anatolia (Menderes Massif) and the Eastern Aegean Sea evolved above a major left-lateral tear in the Hellenic slab. In the crust, the differential retreat was accommodated mostly by low-angle shear zones with a constant direction of stretching and the formation of a-type high-temperature domes. On the opposite side of the Aegean region, the Corinth and Volos Rift as well as the Kephalonia fault offshore, accommodate the formation of a dextral tear fault. We discuss the rare occurrence of pure strike-slip faults in these contexts and propose that the high heat flow above the retreating slabs and more especially above slab tears favors a ductile behavior with distributed deformation of the crust and the formation of low-angle shear zones and high-temperature domes. While retreat proceeds, aided by tears, true strike-slip fault system may localize and propagate toward the retreating trench, ultimately leading to the formation of new plate boundary, as shown by the example of the North Anatolian Fault.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.