Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3′UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Transposable elements (TEs) are interspersed repetitive DNA sequences with the ability to mobilize in the genome. The recent development of improved tools for evaluating TE-derived sequences in genomic studies has enabled an increasing attention to the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2 gene is a nearly perfect duplication of SMN1. Both genes (collectively known as SMN1/SMN2) are highly enriched in TEs. A comprehensive analysis of TEs insertions in the SMN1/2 loci of SMA carriers, patients and healthy/control individuals was completed to perceive TE dynamics in SMN1/2 and try to establish a link between these elements and SMA.We found an Alu insertion in the promoter region and one L1 element in the 3’UTR that likely play an important role as an alternative promoter and as an alternative terminator to the gene, respectively. Additionally, the several Alu repeats inserted in the genes’ introns influence splicing, giving rise to alternative splicing events that cause RNA circularization and the birth of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that can lead to SMN1 exons deletions, that ultimately lead to SMA. The many good and bad implications associated with the presence of TEs inside SMN1/2 make this genomic region ideal for understanding the implications of TEs on genomic evolution as well as on human genomic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.