Modulation of human recombinant secretory type II phospholipase A(2) activity by ceramide and cholesterol was investigated using model glycerophospholipid substrates composed of phosphatidylethanolamine and phosphatidylserine dispersed in aqueous medium. Enzyme activity was monitored by measurement of released fatty acids using capillary GC-MS. Fatty acids from the sn-2 position of the phospholipids were hydrolysed by the enzyme in proportion to the relative abundance of the phospholipid in the substrate. Addition of increasing amounts of ceramide to the substrate progressively enhanced phospholipase activity. The increased activity was accomplished largely by preferential hydrolysis of polyunsaturated fatty acids, particularly arachidonic acid, derived from phosphatidylethanolamine. The addition of sphingomyelin to the substrate glycerophospholipids inhibited phospholipase activity but its progressive substitution by ceramide, so as to mimic sphingomyelinase activity, counteracted the inhibition. The presence of cholesterol in dispersions of glycerophospholipid-substrate-containing ceramides suppressed activation of the enzyme resulting from the presence of ceramide. The molecular basis of enzyme modulation was investigated by analysis of the phase structure of the dispersed lipid substrate during temperature scans from 46 to 20 degrees C using small-angle synchrotron X-ray diffraction. These studies indicated that intermediate structures created after ceramide-dependent phase separation of hexagonal and lamellar phases represent the most susceptible form of the substrate for enzyme hydrolysis.
Free-standing giant unilamellar vesicles were used to visualize the complex lateral heterogeneity, induced by ceramide in the membrane bilayer at micron scale using C(12)-NBD-PC probe partitioning under the fluorescence microscope. Ceramide gel domains exist as leaf-like structures in glycerophospholipid/ceramide mixtures. Cholesterol readily increases ceramide miscibility with glycerophospholipids but cholesterol-ceramide interactions are not involved in the organization of the liquid-ordered phase as exemplified by sphingomyelin/cholesterol mixtures. Sphingomyelin stabilizes the gel phase and thus decreases ceramide miscibility in the presence of cholesterol. Gel/liquid-ordered/liquid-disordered phase coexistence was visualized in quaternary phosphatidylcholine/sphingomyelin/ceramide/cholesterol mixtures as occurrence of dark leaf-like and circular domains within a bright liquid phase. Sphingomyelin initiates specific ceramide-sphingomyelin interactions to form a highly ordered gel phase appearing at temperatures higher than pure ceramide gel phase in phosphatidylcholine/ceramide mixtures. Less sphingomyelin is engaged in formation of liquid-ordered phase leading to a shift in its formation to lower temperatures. Sphingomyelinase activity on substrate vesicles destroys micron L(o) domains but induces the formation of a gel-like phase. The activation of phospholipase A(2) by ceramide on heterogeneous membranes was visualized. Changes in the phase state of the membrane bilayer initiates such morphological processes as membrane fragmentation, budding in and budding out was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.