Concrete is a material which is widely used in architecture, not only for structural purposes but also for architectural elements for its versatility and excellent performance. However, the manufacturing of this material as a mixture of water, cement, and fine and coarse aggregate comes with a high environmental cost, such as gas emissions, among other things. This is the reason why different alternatives are being proposed in order to replace coarse aggregates with other recycled materials, as it is one of the less sustainable components of the mixture in terms of extraction. One of these alternatives is recycled glass coming from drinking bottles, crushed into small grains and mixed in the same proportions as regular aggregates. This study proposes the mechanical characterization of a new architectural concrete mixture by using white Lafarge cement and glass-recycled aggregates; this proposed concrete is made especially for architectural elements like façade panels, rather than structural elements. The mechanical evaluation of this new material is done through a set of experimental tests under compression and also bending, comparing three different ratios of glass aggregate in the mixture.
Image processing methods are increasingly used in civil engineering, especially in the maintenance of concrete structures. Current digital cameras and post-processing methods allow verifying qualitatively the state of conservation of wide areas of concrete in dams and bridges. When dealing with building refurbishments and rehabilitation, it is important to verify that existing structural elements fit the requirements of the standards; in the case of structures formed by traditional RC joists, cracking of the bottom-face provides information about the serviceability of these elements. This research proposed and put in practice through experimental tests an image post-processing method for quantification of cracking (five specimens were used and calibrated). Based on a sequence of shots and through a complex step-by-step post-processing, cracks were identified and measured to calibrate this method for real purposes. The method quantifies the crack opening width and spacing by analyzing the bottom-face of the joists through the shots. Measured values of crack spacing are very similar to those predicted by the standards, while the values of crack opening width differ more from theoretical ones due to the scattering of results. However, the proposed method has been proved as suitable and useful for fast inspections of RC elements under bending.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.