Network slicing is a new paradigm for future 5G networks where the network infrastructure is divided into slices devoted to different services and customized to their needs. With this paradigm, it is essential to allocate to each slice the needed resources, which requires the ability to forecast their respective demands. To this end, we present DeepCog, a novel data analytics tool for the cognitive management of resources in 5G systems. DeepCog forecasts the capacity needed to accommodate future traffic demands within individual network slices while accounting for the operator's desired balance between resource overprovisioning (i.e., allocating resources exceeding the demand) and service request violations (i.e., allocating less resources than required). To achieve its objective, DeepCog hinges on a deep learning architecture that is explicitly designed for capacity forecasting. Comparative evaluations with real-world measurement data prove that DeepCog's tight integration of machine learning into resource orchestration allows for substantial (50% or above) reduction of operating expenses with respect to resource allocation solutions based on state-of-theart mobile traffic predictors. Moreover, we leverage DeepCog to carry out an extensive first analysis of the trade-off between capacity overdimensioning and unserviced demands in adaptive, sliced networks and in presence of real-world traffic.
As a chain is as strong as its weakest element, so as the efficiency, flexibility, and robustness of a mobile network, which relies on a range of different functional elements and mechanisms.. Indeed, the mobile network architecture needs particular attention when discussing the evolution of 3GPP EPS because it is the architecture which integrates the many different future technologies into one mobile network. This article discusses 3GPP EPS mobile network evolution as a whole, analyzing specific architecture properties which are critical in future 3GPP EPS releases. In particular, this article discusses the evolution towards a "network of functions," networking slicing, and software-defined mobile network control, management, and orchestration. Furthermore, the roadmap for the future evolution of 3GPP EPS and its technology components is detailed and relevant standards defining organizations are listed.
The emerging network slicing paradigm for 5G provides new business opportunities by enabling multi-tenancy support. At the same time, new technical challenges are introduced, as novel resource allocation algorithms are required to accommodate different business models. In particular, infrastructure providers need to implement radically new admission control policies to decide on network slices requests depending on their Service Level Agreements (SLA). When implementing such admission control policies, infrastructure providers may apply forecasting techniques in order to adjust the allocated slice resources so as to optimize the network utilization while meeting network slices' SLAs. This paper focuses on the design of three key network slicing building blocks responsible for (i) traffic analysis and prediction per network slice, (ii) admission control decisions for network slice requests, and (iii) adaptive correction of the forecasted load based on measured deviations. Our results show very substantial potential gains in terms of system utilization as well as a trade-off between conservative forecasting configurations versus more aggressive ones (higher gains, SLA risk).
Abstract-In addition to providing substantial performance enhancements, future 5G networks will also change the mobile network ecosystem. Building on the network slicing concept, 5G allows to "slice" the network infrastructure into separate logical networks that may be operated independently and targeted at specific services. This opens the market to new players: the infrastructure provider, which is the owner of the infrastructure, and the tenants, which may acquire a network slice from the infrastructure provider to deliver a specific service to their customers. In this new context, we need new algorithms for the allocation of network resources that consider these new players. In this paper, we address this issue by designing an algorithm for the admission and allocation of network slices requests that (i) maximises the infrastructure provider's revenue and (ii) ensures that the service guarantees provided to tenants are satisfied. Our key contributions include: (i) an analytical model for the admissibility region of a network slicing-capable 5G Network, (ii) the analysis of the system (modelled as a Semi-Markov Decision Process) and the optimisation of the infrastructure provider's revenue, and (iii) the design of an adaptive algorithm (based on Q-learning) that achieves close to optimal performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.