This study shows that the growth of Oenococcus oeni CECT 4100 in a synthetic medium is affected by phenolic compounds in different ways, depending on their type and concentration. Generally they have no effects at low concentrations, but hydroxycinnamic acids are inhibitory at high concentrations. Malolactic fermentation was stimulated in the presence of catechin and quercetin, but increasingly delayed with increasing amounts of p-coumaric acid. Gallic acid appeared to delay or inhibit the formation of acetic acid from citric acid. This could lead to a better control of malolactic fermentation and suppress the increase in volatile acidity, which is undesirable in the wine-making process.
Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF.
Genetic diversity of 60 Oenococcus oeni strains from different wines was evaluated by numerical analysis of (i) pulsed-field gel electrophoresis (PFGE) patterns with endonuclease ApaI and (ii) randomly amplified polymorphic DNA (RAPD)-PCR fingerprints with four oligonucleotide primers. Sixty-two percent of the strains could be distinguished by PFGE, whereas most strains were identified by distinct RAPD-PCR profiles and associated according to the geographical origin. Because of its rapidity and reliability, RAPD-PCR appeared to be a suitable method for typing and monitoring O. oeni strains in winemaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.