This proposal for standardization of (123)I-metaiodobenzylguanidine (iobenguane, MIBG) cardiac sympathetic imaging includes recommendations for patient information and preparation, radiopharmaceutical, injected activities and dosimetry, image acquisition, quality control, reconstruction methods, attenuation, scatter and collimator response compensation, data analysis and interpretation, reports, and image display. The recommendations are based on evidence coming from original or scientific studies whenever possible and as far as possible reflect the current state-of-the-art in cardiac MIBG imaging. The recommendations are designed to assist in the practice of performing, interpreting and reporting cardiac sympathetic imaging. The proposed standardization does not include clinical indications, benefits or drawbacks of cardiac sympathetic imaging, and does not address cost benefits or cost effectiveness; however, clinical settings of potential utility are mentioned. Standardization of MIBG cardiac sympathetic imaging should contribute to increasing its clinical applicability and integration into current nuclear cardiology practice.
In the era when positron emission tomography (PET) seems to constitute the most advanced application of nuclear medicine imaging, still the conventional procedure of single photon emission computed tomography (SPECT) is far from being obsolete, especially if combined with computed tomography (CT). In fact, this dual modality imaging technique (SPECT/CT) lends itself to a wide variety of useful diagnostic applications whose clinical impact is in most instances already well established, while the evidence is growing for newer applications. The increasing availability of new hybrid SPECT/CT devices with advanced technology offers the opportunity to shorten acquisition time and to provide accurate attenuation correction and fusion imaging. In this review we analyse and discuss the capabilities of SPECT/CT for improving sensitivity and specificity in the imaging of both oncological and non-oncological diseases. The main advantages of SPECT/CT are represented by better attenuation correction, increased specificity, and accurate depiction of the localization of disease and of possible involvement of adjacent tissues. Endocrine and neuroendocrine tumours are accurately localized and characterized by SPECT/CT, as also are solitary pulmonary nodules and lung cancers, brain tumours, lymphoma, prostate cancer, malignant and benign bone lesions, and infection. Furthermore, hybrid SPECT/CT imaging is especially suited to support the increasing applications of minimally invasive surgery, as well as to precisely define the diagnostic and prognostic profile of cardiovascular patients. Finally, the applications of SPECT/CT to other clinical disorders or malignant tumours is currently under extensive investigation, with encouraging results in terms of diagnostic accuracy.
Structure and function in any organ are inseparable categories, both in health and disease. Whether we are ready to accept, or not, many questions in cardiovascular medicine are still pending, due to our insufficient insight in the basic science. Even so, any new concept encounters difficulties, mainly arising from our inert attitude, which may result either in unjustified acceptance or denial. The ventricular myocardial band concept, developed over the last 50 years, has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium. After more than five centuries long debate on macroscopic structure of the ventricular myocardium, this concept has provided a promising ground for its final understanding. Recent validations of the ventricular myocardial band, reviewed here, as well as future research directions that are pointed out, should initiate much wider scientific interest, which would, in turn, lead to reconciliation of some exceeded concepts about developmental, electrical, mechanical and energetical events in human heart. The benefit of this, of course, would be the most evident in the clinical arena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.