Opioid receptors regulate neuronal activity by both pre- and postsynaptic mechanisms. We recently reported that the cloned delta- opioid receptor (DOR1) is primarily targeted to axons, suggesting a presynaptic role. In the present study we have studied the distribution and targeting of another opioid receptor, the mu-opioid receptor (MOR1), by raising anti-peptide antisera to the C-terminal peptide of MOR1. The specificity of the antisera was determined by analysis of transfected cells, Western blots, and immunoisolation studies. Immunohistochemistry showed that MOR1 immunoreactivity was enriched in many brain areas including cerebral cortex, striatum, hippocampus, locus coeruleus, and the superficial laminae of the dorsal horn. Moreover, MOR1-expressing neurons seem to target this receptor preferentially to their somatodendritic domain as determined by double- labeling experiments with MAP2. However, discrete populations of neurons target MOR1 to their axons, including some primary afferent neurons that express DOR1. In many regions enkephalin-containing axons were complementary to MOR1, suggesting by their proximity that enkephalins may be physiologically relevant ligands for this receptor. Thus, these results provide a morphological basis for understanding pre- and postsynaptic functions mediated by MOR1.
Antisera were raised against a synthetic peptide corresponding to the carboxyl terminus of the K-opioid receptor (KOR1). Specificity of the antisera was verified by staining of COS-7 cells transfected with KOR1 and epitopetagged KORI cDNAs, by recognition by the antisera of proteins on Western blots of both transfected cells and brain tissue, by the absence of staining of both brain tissue and transfected cells after preabsorption of the antisera with the cognate peptide, and on the strong correlation between the distribution of KOR1 immunoreactivity and that of earlier ligand binding and in situ hybridization studies. Results indicate that KOR1 in neurons is targeted into both the axonal and somatodendritic compartments, but the majority of immunostaining was seen in the somatodendritic compartment. In sections from rat and guinea pig brain, prominent KOR1 staining was seen in the ventral forebrain, hypothalamus, thalamus, posterior pituitary, and midbrain. While the staining pattern was similar in both species, distinct differences were also observed. The distribution of preprodynorphin and KOR1 immunoreactivity was complementary in many brain regions, suggesting that KOR1 is poised to mediate the physiological actions of dynorphin. However, the distribution of KOR1 and enkephalin immunoreactivity was complementary in some regions as well. These results suggest that the KORI protein is primarily, but not exclusively, deployed to postsynaptic membranes where it mediates the effects of products of preprodynorphin and possibly preproenkephalin.
The cloning of receptors for neuropeptides made possible studies that identified the neurons that utilize these receptors. In situ hybridization can detect transcripts that encode receptors and thereby identify the cells responsible for their expression, whereas immunocytochemistry enables one to determine the region of the plasma membrane where the receptor is located. We produced antibodies to portions of the predicted amino acid sequences of delta, mu, and kappa opioid receptors and used them in combination with antibodies to a variety of neurotransmitters in multicolor immunofluorescence studies visualized by confocal microscopy. Several findings are notable: First, the cloned delta opioid receptor appears to be distributed primarily in axons, and therefore most likely functions in a presynaptic manner. Second, the cloned mu and kappa opioid receptors are found associated with neuronal plasma membranes of dendrites and cell bodies and therefore most likely function in a postsynaptic manner. However, in certain, discrete populations of neurons, mu and kappa opioid receptors appear to be distributed in axons. Third, enkephalin-containing terminals are often found in close proximity (although not necessarily synaptically linked) to membranes containing either the delta or mu opioid receptors, whereas dynorphin-containing terminals are often found in proximity to kappa opioid receptors. Finally, a substantial mismatch between opioid receptors and their endogenous ligands was observed in some brain regions. However, this mismatch was characterized by complementary zones of receptor and ligand, suggesting underlying principles of organization that underlie long-distance, nonsynaptic neurotransmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.