Background and Purpose: Diffusion-weighted magnetic resonance imaging has been shown to be particularly suited to the study of the acute phase of cerebral ischemia in animal models. The studies reported in this paper were undertaken to determine whether this technique is sensitive to the known ischemic thresholds for cerebral tissue energy failure and disturbance of membrane ion gradients.Methods: Diffusion-weighted images of the gerbil brain were acquired under two sets of experimental conditions: as a function of cerebral blood flow after controlled graded occlusion of the common carotid arteries (partial ischemia), as a function of time following complete bilateral carotid artery occlusion (severe global ischemia), and on deocclusion after 60 minutes of ischemia.Results: During partial cerebral ischemia, the diffusion-weighted images remained unchanged until the cerebral blood flow was reduced to 15-20 ml • 100 g" 1 • min~' and below, when image intensity increased as the cerebral blood flow was lowered further. This is similar to the critical flow threshold for maintenance of tissue high-energy metabolites and ion homeostasis. After the onset of severe global cerebral ischemia, diffusion-weighted image intensity increased gradually after a delay of approximately 2.5 minutes, consistent with complete loss of tissue adenosine triphosphate and with the time course of increase in extracellular potassium. This hyperintensity decreased on deocclusion following 60 minutes of ischemia.Conclusions: The data suggest that diffusion-weighted imaging is sensitive to the disruption of tissue energy metabolism or a consequence of this disruption. This raises the possibility of imaging energy failure noninvasively. In humans, this could have potential in visualizing brain regions where energy metabolism is impaired, particularly during the acute phase following stroke. (Stroke 1992;23:1602-1612 KEY WORDS • cerebral ischemia • energy metabolism • magnetic resonance imaging • gerbils
Background: Short-chain fatty acids (SCFAs), metabolites produced through the microbial fermentation of nondigestible dietary components, have key roles in energy homeostasis. Animal research suggests that colon-derived SCFAs modulate feeding behavior via central mechanisms. In humans, increased colonic production of the SCFA propionate acutely reduces energy intake. However, evidence of an effect of colonic propionate on the human brain or reward-based eating behavior is currently unavailable.Objectives: We investigated the effect of increased colonic propionate production on brain anticipatory reward responses during food picture evaluation. We hypothesized that elevated colonic propionate would reduce both reward responses and ad libitum energy intake via stimulation of anorexigenic gut hormone secretion.Design: In a randomized crossover design, 20 healthy nonobese men completed a functional magnetic resonance imaging (fMRI) food picture evaluation task after consumption of control inulin or inulin-propionate ester, a unique dietary compound that selectively augments colonic propionate production. The blood oxygen level–dependent (BOLD) signal was measured in a priori brain regions involved in reward processing, including the caudate, nucleus accumbens, amygdala, anterior insula, and orbitofrontal cortex (n = 18 had analyzable fMRI data).Results: Increasing colonic propionate production reduced BOLD signal during food picture evaluation in the caudate and nucleus accumbens. In the caudate, the reduction in BOLD signal was driven specifically by a lowering of the response to high-energy food. These central effects were partnered with a decrease in subjective appeal of high-energy food pictures and reduced energy intake during an ad libitum meal. These observations were not related to changes in blood peptide YY (PYY), glucagon-like peptide 1 (GLP-1), glucose, or insulin concentrations.Conclusion: Our results suggest that colonic propionate production may play an important role in attenuating reward-based eating behavior via striatal pathways, independent of changes in plasma PYY and GLP-1. This trial was registered at clinicaltrials.gov as NCT00750438.
The time evolution of water diffusion, perfusion, T 1 , and T 2 is investigated at high magnetic field (8.5 T) following permanent middle cerebral artery occlusion in the rat. Cerebral blood flow maps were obtained using arterial spin tagging. Although the quantitative perfusion measurements in ischemic tissue still pose difficulties, the combined perfusion and diffusion data nevertheless distinguish between a ''moderately affected area,'' with reduced perfusion but normal diffusion; and a ''severely affected area,'' in which both perfusion and diffusion are significantly reduced. Two novel magnetic resonance imaging observations are reported, namely, a decrease in T 2 and an increase in T 1 , both within the first few minutes of ischemia. The rapid initial decrease in T 2 is believed to be associated with an increase in deoxyhemoglobin levels, while the initial increase in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.