The development of long-term symptoms of coronavirus disease 2019 (COVID-19) more than four weeks after primary infection, termed “long COVID” or post-acute sequela of COVID-19 (PASC), can implicate persistent neurological complications in up to one third of patients and present as fatigue, “brain fog”, headaches, cognitive impairment, dysautonomia, neuropsychiatric symptoms, anosmia, hypogeusia, and peripheral neuropathy. Pathogenic mechanisms of these symptoms of long COVID remain largely unclear; however, several hypotheses implicate both nervous system and systemic pathogenic mechanisms such as SARS-CoV2 viral persistence and neuroinvasion, abnormal immunological response, autoimmunity, coagulopathies, and endotheliopathy. Outside of the CNS, SARS-CoV-2 can invade the support and stem cells of the olfactory epithelium leading to persistent alterations to olfactory function. SARS-CoV-2 infection may induce abnormalities in innate and adaptive immunity including monocyte expansion, T-cell exhaustion, and prolonged cytokine release, which may cause neuroinflammatory responses and microglia activation, white matter abnormalities, and microvascular changes. Additionally, microvascular clot formation can occlude capillaries and endotheliopathy, due to SARS-CoV-2 protease activity and complement activation, can contribute to hypoxic neuronal injury and blood–brain barrier dysfunction, respectively. Current therapeutics target pathological mechanisms by employing antivirals, decreasing inflammation, and promoting olfactory epithelium regeneration. Thus, from laboratory evidence and clinical trials in the literature, we sought to synthesize the pathophysiological pathways underlying neurological symptoms of long COVID and potential therapeutics.
In tauopathies, phosphorylation, acetylation, cleavage and other modifications of tau drive intracellular generation of diverse forms of toxic tau aggregates and associated seeding activity, which have been implicated in subsequent synaptic failure and neurodegeneration. Suppression of this wide range of pathogenic species, seeding and toxicity mechanisms, while preserving the physiological roles of tau, presents a key therapeutic goal. Identification and targeting of signaling networks that influence a broad spectrum of tau pathogenic mechanisms might prevent or reverse synaptic degeneration and modify disease outcomes. The p75 neurotrophin receptor (p75 NTR) modulates such networks, including activation of multiple tau kinases, calpain and rhoA-cofilin activity. The orally bioavailable smallmolecule p75 NTR modulator, LM11A-31, was administered to tau P301S mice for 3 months starting at 6 months of age, when tau pathology was well established. LM11A-31 was found to reduce: excess activation of hippocampal cdk5 and JNK kinases and calpain; excess cofilin phosphorylation, tau phosphorylation, acetylation and cleavage; accumulation of multiple forms of insoluble tau aggregates and filaments; and, microglial activation. Hippocampal extracts from treated mice had substantially reduced tau seeding activity. LM11A-31 treatment also led to a reversal of pyramidal neuron dendritic spine loss, decreased loss of dendritic complexity and improvement in performance of hippocampal behaviors. These studies identify a therapeutically tractable upstream signaling module regulating a wide spectrum of basic mechanisms underlying tauopathies.
Hypoxia-Inducible Factor-1α (HIF-1α) has presented a new direction for ischemic preconditioning of surgical flaps to promote their survival. In a previous study, we demonstrated the effectiveness of HIF-1a DNA plasmids in this application. In this study, to avoid complications associated with plasmid use, we sought to express HIF-1α through mRNA transfection and determine its biological activity by measuring the upregulation of downstream angiogenic genes. We transfected six different HIF-1a mRNAs–one predominant, three variant, and two novel mutant isoforms–into primary human dermal fibroblasts using Lipofectamine, and assessed mRNA levels using RT-qPCR. At all time points examined after transfection (3, 6, and 10 hours), the levels of HIF-1α transcript were significantly higher in all HIF-1α transfected cells relative to the control (all p < 0.05, unpaired Student’s T-test). Importantly, the expression of HIF-1α transcription response genes (VEGF, ANG-1, PGF, FLT1, and EDN1) was significantly higher in the cells transfected with all isoforms than with the control at six and/or ten hours post-transfection. All isoforms were transfected successfully into human fibroblast cells, resulting in the rapid upregulation of all five downstream angiogenic targets tested. These findings support the potential use of HIF-1α mRNA for protecting ischemic dermal flaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.