We present discovery imaging and spectroscopy for nine new z ∼ 6 quasars found in the Canada-France Highz Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous SDSS sample we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalisation and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M 1450 ≈ −25. A double power law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1 σ uncertainty < 0.1 dex) over the range −27.5 < M 1450 < −24.7. The best-fit parameters are Φ(M * 1450 ) = 1.14 × 10 −8 Mpc −3 mag −1 , break magnitude M * 1450 = −25.13 and bright end slope β = −2.81. However the covariance between β and M * 1450 prevents strong constraints being placed on either parameter. For a break magnitude in the range −26 < M * 1450 < −24 we find −3.8 < β < −2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.
We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44. We also use near-IR spectroscopy of nine CFHQS quasars at z ∼ 6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey (SDSS) quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between Mg ii FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z = 6. Our black hole mass function is ∼ 10 4 times lower than at z = 0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high-redshift than is observed at low-redshift and/or a low quasar duty cycle at z = 6. In comparison, the global stellar mass function is only ∼ 10 2 times lower at z = 6 than at z = 0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass -stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4 < z < 6 from the local relation if one just studies the most massive black holes.
We present in this paper, the first results of a spectropolarimetric analysis of a small sample (∼20) of active stars ranging from spectral type M0 to M8, which are either fully convective or possess a very small radiative core. This study aims at providing new constraints on dynamo processes in fully convective stars. This paper focuses on five stars of spectral type ∼M4, i.e. with masses close to the full convection threshold (≃0.35 M⊙), and with short rotational periods. Tomographic imaging techniques allow us to reconstruct the surface magnetic topologies from the rotationally modulated time‐series of circularly polarized profiles. We find that all stars host mainly axisymmetric large‐scale poloidal fields. Three stars were observed at two different epochs separated by ∼1 yr; we find the magnetic topologies to be globally stable on this time‐scale. We also provide an accurate estimation of the rotational period of all stars, thus allowing us to start studying how rotation impacts the large‐scale magnetic field.
We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0–M3), that is above the full convection threshold. Applying tomographic imaging techniques to time series of rotationally modulated circularly polarized profiles collected with the NARVAL spectropolarimeter, we determine the rotation period and reconstruct the large‐scale magnetic topologies of six early M dwarfs. We find that early‐M stars preferentially host large‐scale fields with dominantly toroidal and non‐axisymmetric poloidal configurations, along with significant differential rotation (and long‐term variability); only the lowest‐mass star of our subsample is found to host an almost fully poloidal, mainly axisymmetric large‐scale field resembling those found in mid‐M dwarfs. This abrupt change in the large‐scale magnetic topologies of M dwarfs (occurring at spectral type M3) has no related signature on X‐ray luminosities (measuring the total amount of magnetic flux); it thus suggests that underlying dynamo processes become more efficient at producing large‐scale fields (despite producing the same flux) at spectral types later than M3. We suspect that this change relates to the rapid decrease in the radiative cores of low‐mass stars and to the simultaneous sharp increase of the convective turnover times (with decreasing stellar mass) that models predict to occur at M3; it may also be (at least partly) responsible for the reduced magnetic braking reported for fully convective stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.