Calcitonin gene-related peptide (CGRP) is a neuropeptide that has an important anti-inflammatory role in the immune system. Research has shown that CGRP is an integral part in peripheral nerve regeneration by (1) suppressing tumor necrosis factor-α, (2) forming an initial nerve bridge by increasing fibroblast motility and extracellular matrix synthesis, (3) vascularizing the spinal cord injury site, and (4) inducing Schwann cell (SC) proliferation. In this treatise, the following hypotheses will be explored: (1) CGRP is induced by c-Jun to regulate SC dedifferentiation, (2) CGRP promotes the chemotaxic migration of SCs along the nerve bridge, and (3) CGRP induces myelinophagy by activating various signaling pathways, such as p38 mitogen-activated protein kinase and Raf/extracellular signal-regulated kinase. These processes provide a framework for understanding the role of CGRP in peripheral nerve regeneration, which may be important in developing better strategies for nerve repair and gaining further insight into demyelinating diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.