The nonlinear inverse problem for seismic reflection data is solved in the acoustic approximation. The method is based on the generalized least-squares criterion, and it can handle errors in the data set and a priori information on the model. Multiply reflected energy is naturally taken into account, as well as refracted energy or surface waves. The inverse problem can be solved using an iterative algorithm which gives, at each iteration, updated values of bulk modulus, density, and time source function. Each step of the iterative algorithm essentially consists of a forward propagation of the actual sources in the current model and a forward propagation (backward in time) of the data residuals. The correlation at each point of the space of the two fields thus obtained yields the corrections of the bulk modulus and density models. This shows, in particular, that the general solution of the inverse problem can be attained by methods strongly related to the methods of migration of unstacked data, and commercially competitive with them.
We attempt to give a general definition of the nonlinear least squares inverse problem. First, we examine the discrete problem (finite number of data and unknowns), setting the problem in its fully nonlinear form. Second, we examine the general case where some data and/or unknowns may be functions of a continuous variable and where the form of the theoretical relationship between data and unknowns may be general (in particular, nonlinear integrodifferential equations). As particular cases of our nonlinear algorithm we find linear solutions well known in geophysics, like Jackson's (1979) solution for discrete problems or Backus and Gilbert's (1970) solution for continuous problems.
Probabilistic formulation of inverse problems leads to the definition of a probability distribution in the model space. This probability distribution combines a priori information with new information obtained by measuring some observable parameters (data). As, in the general case, the theory linking data with model parameters is nonlinear, the a posteriori probability in the model space may not be easy to describe (it may be multimodal, some moments may not be defined, etc.). When analyzing an inverse problem, obtaining a maximum likelihood model is usually not sufficient, as we normally also wish to have information on the resolution power of the data. In the general case we may have a large number of model parameters, and an inspection of the marginal probability densities of interest may be impractical, or even useless. But it is possible to pseudorandomly generate a large collection of models according to the posterior probability distribution and to analyze and display the models in such a way that information on the relative likelihoods of model properties is conveyed to the spectator. This can be accomplished by means of an efficient Monte Carlo method, even in cases where no explicit formula for the a priori distribution is available. The most well known importance sampling method, the Metropolis algorithm, can be generalized, and this gives a method that allows analysis of (possibly highly nonlinear) inverse problems with complex a priori information and data with an arbitrary noise distribution.
The problem of interpretation of seismic reflection data can be posed with sufficient generality using the concepts of inverse theory. In its roughest formulation, the inverse problem consists of obtaining the Earth model for which the predicted data best fit the observed data. If an adequate forward model is used, this best model will give the best images of the Earth's interior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.