We hypothesized that N-methyl-d-aspartate (NMDA) receptors mediate some or all of the capacity of inhaled anesthetics to prevent movement in the face of noxious stimulation, and that this capacity to prevent movement correlates directly with the in vitro capacity of such anesthetics to block the NMDA receptor. To test this hypothesis, we measured the effect of IV infusion of the NMDA blockers dizocilpine (MK-801) and (R)-4-(3-phosphonopropyl) piperazine-2-carboxylic acid (CPP) to decrease the MAC (the minimum alveolar concentration of anesthetic that prevents movement in 50% of subjects given a noxious stimulation) of 8 conventional anesthetics (cyclopropane, desflurane, enflurane, halothane, isoflurane, nitrous oxide, sevoflurane, and xenon) and 8 aromatic compounds (benzene, fluorobenzene, o-difluorobenzene, p-difluorobenzene, 1,2,4-trifluorobenzene, 1,3,5-trifluorobenzene, pentafluorobenzene, and hexafluorobenzene) and, for comparison, etomidate. We postulated that MK-801 or CPP infusions would decrease MAC in inverse proportion to the in vitro capacity of these anesthetics to block the NMDA receptor. This notion proved correct for the aromatic inhaled anesthetics, but not for the conventional anesthetics. At the greatest infusion of MK-801 (32 microg x kg(-1) x min(-1)) the MACs of conventional anesthetics decreased by 59.4 +/- 3.4% (mean +/- sd) and at 8 microg x kg(-1) x min(-1) by 45.5 +/- 4.2%, a decrease not significantly different from a 51.4 +/- 19.0% decrease produced in the EC50 for etomidate, an anesthetic that acts solely by enhancing gamma-amino butyric acid (GABA) receptors. We conclude that some aromatic anesthetics may produce immobility in the face of noxious stimulation by blocking the action of glutamate on NMDA receptors but that conventional inhaled anesthetics do not.
Most studies of chirality in inhaled anesthetic action have used the enantiomers of isoflurane. These enantiomers are expensive and scarce, which limits studies, such as the preliminary identification of molecular targets of anesthetic action, that can be performed with these isomers. We hypothesized that secondary alcohols (i.e., compounds having a -CH2-CHOH-CH3 group) that are experimental anesthetics would show enantioselectivity. To test this hypothesis, we determined the minimum alveolar anesthetic concentration (MAC) of the enantiomers of the homologous series of 2-alcohols from 2-butanol to 2-heptanol in rats. Because these alcohols are partially metabolized to 2-ketones during the course of study (i.e., having a -CH2-CO-CH3 group), we independently measured the MAC of the 2-ketones. Assuming additivity of MAC of the ketones with the alcohols, we corrected for the anesthetic effect of the ketones in rats to determine the MAC of the alcohols. We found that the 2-butanol and 2-pentanol isomers were enantioselective. S-(+)-2-butanol had a MAC that was 17% larger than for the R-(-)-enantiomer, whereas S-(+)-2-pentanol had a MAC that was 38% larger than the R-(-)- enantiomer. No stereoselectivity was observed for 2-hexanol and 2-heptanol. These findings may permit studies of chirality in anesthesia, particularly in in vitro systems where metabolism does not occur, using inexpensive volatile compounds.
The Meyer-Overton hypothesis predicts that anesthetic potency correlates inversely with lipophilicity; e.g., MAC times the olive oil/gas partition coefficient equals a constant of approximately 1.82 +/- 0.56 atm (mean +/- sd) for conventional inhaled anesthetics. MAC is the minimum alveolar concentration of anesthetic required to eliminate movement in response to a noxious stimulus in 50% of subjects. In contrast to conventional inhaled anesthetics, MAC times the olive oil/gas partition coefficient for normal alcohols from methanol through octanol equals a constant one tenth as large as that for conventional inhaled anesthetics. The alcohol (C-OH) group causes a great affinity of alcohols to water, and the C-OH may tether the alcohol at the hydrophobic-hydrophilic interface where anesthetics are thought to act. We hypothesized that the position of the C-OH group determined potency, perhaps by governing the maximum extent to which the acyl portion of the molecule might extend into a hydrophobic phase. Using the same reasoning, we added studies of ketones with similar numbers of carbon atoms between the C=O group and the terminal methyl group. The results for both alcohols and ketones showed the predicted correlation, but the correlation was no better than that with carbon chain length regardless of the placement of the oxygen. The oil/gas partition coefficient predicted potency as well as, or better than, either chain length or oxygen placement. Hydrophilicity, as indicated by the saline/gas partition coefficient, also seemed to influence potency.
Despite the known capacity of hypothermia to increase anesthetic potency (decrease the partial pressure required to produce anesthesia), many in vitro studies examine the effects of ethanol and other anesthetics in oocytes or isolated neurons at room temperature. We tested whether, as predicted for potent inhaled anesthetics, a proportionate increase in solubility with hypothermia matched a decrease in ethanol minimum alveolar concentration (MAC), and thereby made the use of a single anesthetic concentration appropriate regardless of temperature. We determined ethanol MAC in normothermic (37.3 degrees C) and hypothermic (28.5 degrees C) rats, and, at the two temperatures, also determined ethanol solubilities in olive oil and saline. Ethanol MAC decreased, while olive oil/gas and saline/gas partition coefficients increased. However, the increase in the saline/gas partition coefficient did not match the decrease in MAC, and thus the aqueous-phase partial pressure producing absence of movement in 50% of rats (EC50) values for ethanol decreased by 17%. Although this decrease is not large, it may be important for comparative estimates of the in vitro effects of ethanol at different temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.