The accumulation of α-1,4-polyglucans is an important strategy to cope with transient starvation conditions in the environment. In bacteria and plants, the synthesis of glycogen and starch occurs by utilizing ADP-glucose as the glucosyl donor for elongation of the α-1,4-glucosidic chain. The main regulatory step takes place at the level of ADP-glucose synthesis, a reaction catalyzed by ADP-Glc pyrophosphorylase (PPase). Most of the ADP-Glc PPases are allosterically regulated by intermediates of the major carbon assimilatory pathway in the organism. Based on specificity for activator and inhibitor, classification of ADP-Glc PPases has been expanded into nine distinctive classes. According to predictions of the secondary structure of the ADP-Glc PPases, they seem to have a folding pattern common to other sugar nucleotide pyrophosphorylases. All the ADP-Glc PPases as well as other sugar nucleotide pyrophosphorylases appear to have evolved from a common ancestor, and later, ADP-Glc PPases developed specific regulatory properties, probably by addition of extra domains. Studies of different domains by construction of chimeric ADP-Glc PPases support this hypothesis. In addition to previous chemical modification experiments, the latest random and site-directed mutagenesis experiments with conserved amino acids revealed residues important for catalysis and regulation
In plants, the synthesis of starch occurs by utilizing ADP-glucose as the glucosyl donor for the elongation of alpha-1,4-glucosidic chains. In photosynthetic bacteria the synthesis of glycogen follows a similar pathway. The first committed step in these pathways is the synthesis of ADP-glucose in a reaction catalyzed by ADP-glucose pyrophosphorylase (ADPGlc PPase). Generally, this enzyme is allosterically regulated by intermediates of the major carbon assimilatory pathway in the respective organism. In oxygenic photosynthesizers, ADPGlc PPase is mainly regulated by 3-phosphoglycerate (activator) and inorganic orthophosphate (inhibitor), interacting in four different patterns. Recent reports have shown that in higher plants, some of the enzymes could also be redox regulated. In eukaryotes, the enzyme is a heterotetramer comprised of two distinct subunits, a catalytic and a modulatory subunit. The latter has been proposed as related to variations in regulation of the enzyme in different plant tissues. Random and site-directed mutagenesis experiments of conserved amino acids revealed important residues for catalysis and regulation. Prediction of the ADPGlc PPase secondary structure suggests that it shares a common folding pattern to other sugar-nucleotide pyrophosphorylases, and they evolved from a common ancestor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.