Here, we show that an ␣-proteobacterium of the genus Asaia is stably associated with larvae and adults of Anopheles stephensi, an important mosquito vector of Plasmodium vivax, a main malaria agent in Asia. Asaia bacteria dominate mosquito-associated microbiota, as shown by 16S rRNA gene abundance, quantitative PCR, transmission electron microscopy and in situ-hybridization of 16S rRNA genes. In adult mosquitoes, Asaia sp. is present in high population density in the female gut and in the male reproductive tract. Asaia sp. from An. stephensi has been cultured in cell-free media and then transformed with foreign DNA. A green fluorescent protein-tagged Asaia sp. strain effectively lodged in the female gut and salivary glands, sites that are crucial for Plasmodium sp. development and transmission. The larval gut and the male reproductive system were also colonized by the transformed Asaia sp. strain. As an efficient inducible colonizer of mosquitoes that transmit Plasmodium sp., Asaia sp. may be a candidate for malaria control. malaria ͉ symbiotic control ͉ insect vector
8Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects.
Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in, and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma respectively. Cross-colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicated that Asaia adopts body invasion mechanisms independent from host-specific biological characteristics. This versatility is an important property for the development of symbiont-based control of different vector-borne diseases.
1The South American tomato leaf miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), is an 2 invasive Neotropical pest. After its first detection in Europe it rapidly invaded more than 30 3Western Palaearctic countries becoming a serious agricultural threat to tomato production in both
Since a few decades, apiculture is facing important economic losses worldwide with general major consequences in many areas of agriculture. A strong attention has been paid towards the phenomenon named Colony Collapse Disorder in which colonies suddenly disappear with no clear explanations. Honeybee colonies can be affected by abiotic factors, such as environmental pollution or insecticide applications for agricultural purposes. Also biotic stresses cause colony losses, including bacterial (e.g. Paenibacillus larvae) and fungal (e.g. Ascosphaera apis) pathogens, microsporidia (e.g. Nosema apis), parasites (i.e. Varroa destructor) and several viruses. In the light of recent research, intestinal dysbiosis, considered as the relative disproportion of the species within the native microbiota, has shown to affect human and animal health. In arthropods, alteration of the gut microbial climax community has been shown to be linked to health and fitness disequilibrium, like in the medfly Ceratitis capitata for which low mate competitiveness is determined by a gut microbial community imbalance. According to these observations, it is possible to hypothesize that dysbiosis may have a role in disease occurrence also in honeybees. Here we aim to discuss the current knowledge on dysbiosis in the honeybee and its relation with honeybee health by reviewing the investigations of the microbial diversity associated to honeybees and the recent experiments performed to control bee diseases by microbial symbionts. We conclude that, despite the importance of a good functionality of the associated microbiota in preserving insect health has been proved, the mechanisms involved in honeybee gut dysbiosis are still unknown. Accurate in vitro, in vivo and in field investigations are required under healthy, diseased and stressed conditions for the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.