We designed and demonstrated a PDMS-based flexible pressure sensor based on plastic optical fibers for measuring pressures up to 3820 mmHg with good repeatability. Its potential applications include wearable sensors for prevention of pressure injuries.
We report the design and testing of a sensor pad based on optical and flexible materials for the development of pressure monitoring devices. This project aims to create a flexible and low-cost pressure sensor based on a two-dimensional grid of plastic optical fibers embedded in a pad of flexible and stretchable polydimethylsiloxane (PDMS). The opposite ends of each fiber are connected to an LED and a photodiode, respectively, to excite and measure light intensity changes due to the local bending of the pressure points on the PDMS pad. Tests were performed in order to study the sensitivity and repeatability of the designed flexible pressure sensor.
We present the fabrication and characterization of elastomeric optical waveguides, to be used for the manufacture of a conformable, water-resistant, and cost-effective pressure sensor that is amenable to the development of smart wearable health monitoring devices. To achieve this goal, high-sensitivity polydimethylsiloxane waveguides with a rectangular cross-section were fabricated. A new up-doping procedure, to tailor the refractive index of the ensuing waveguides, was experimentally developed using benzophenone additives. With this method we demonstrated a high refractive index change (up to +0.05) as a linear function of the benzophenone doping concentration. Propagation losses of about 0.37 dB/cm in the visible range and a high sensitivity to transverse compression of 0.10%/dB optical power loss were measured. It was also shown that one can further control the refractive index of the waveguide core and cladding regions through proper selection of the polydimethylsiloxane base to curing agent mixing ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.