We describe a network congestion control mechanism for cloud gaming (CG) platforms based on the user datagram protocol (UDP). To minimize the contribution of the downstream transmission delay to the total end-to-end latency in the interaction-perception loop, we first define the round-trip video latency (RTVL) and develop a congestion model. Based on them, we design and implement an adaptation strategy that detects the early stages of congestion to prevent high values of RTVL and network bufferbloat, thus avoiding packet losses. Using data measured from the network, our strategy modifies the target output bitrate of the video encoder to throttle down or upto the data flow sent by the server to the client. In the presence of sudden downstream channel capacity drops of over 40%, our algorithm reactively manages to satisfy the key CG requirements for interactive games by entirely avoiding the packet losses and keeping the RTVL below 100 ms. In reasonably stable network conditions, our algorithm proactively keeps exploring for higher bitrates and building a ''network state dictionary,'' due to which it achieves an effective downstream channel capacity use of ∼95%. INDEX TERMS Cloud gaming, congestion control, adaptive video coding, QoS, BBR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.