In this paper, we present a multidimensional fuzzy analysis of the levels and the patterns of poverty and social fragility of migrants' families, in the Italian region of Lombardy, in year 2014. Migrants' poverty emerges as a complex trait, better described as a stratification of nuanced patterns than in black and white terms; Lombard migrants are in fact affected, to different extents, by "a diffused sharing of deprivation facets" and cannot be trivially split into deprived and non-deprived. The paper employs innovative data analysis tools from the Theory of Partially Ordered Sets; compared to mainstream monetary approaches, this leads to more realistic estimates of poverty diffusion and eliminates some well-known biases of standard evaluation procedures, providing strong support to the use of partial order concepts and tools in social evaluation studies.
Assortativity was first introduced by Newman and has been extensively studied
and applied to many real world networked systems since then. Assortativity is a
graph metrics and describes the tendency of high degree nodes to be directly
connected to high degree nodes and low degree nodes to low degree nodes. It can
be interpreted as a first order measure of the connection between nodes, i.e.
the first autocorrelation of the degree-degree vector. Even though
assortativity has been used so extensively, to the author's knowledge, no
attempt has been made to extend it theoretically. This is the scope of our
paper. We will introduce higher order assortativity by extending the Newman
index based on a suitable choice of the matrix driving the connections. Higher
order assortativity will be defined for paths, shortest paths, random walks of
a given time length, connecting any couple of nodes. The Newman assortativity
is achieved for each of these measures when the matrix is the adjacency matrix,
or, in other words, the correlation is of order 1. Our higher order
assortativity indexes can be used for describing a variety of real networks,
help discriminating networks having the same Newman index and may reveal new
topological network features.Comment: 24 pages, 16 figure
A network effect is introduced taking into account competition, cooperation, and mixed-type interaction among agents along a generalized Verhulst-Lotka-Volterra model. It is also argued that the presence of a market capacity undoubtedly enforces a definite limit on the agent's size growth. The state stability of triadic agents, i.e., the most basic network plaquette, is investigated analytically for possible scenarios, through a fixed-point analysis. It is discovered that: (i) market demand is only satisfied for full competition when one agent monopolizes the market; (ii) growth of agent size is encouraged in full cooperation; (iii) collaboration among agents to compete against one single agent may result in the disappearance of this single agent out of the market; and (iv) cooperating with two rivals may become a growth strategy for an intelligent agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.