The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.
Abstract. On 30 December 2002 the coast of the volcanic island of Stromboli, in the Tyrrhenian sea, Italy, was attacked by two tsunamis generated by landslides that took place on the north-west flank of the volcano. The landslides and the tsunamis represented the most impressive and threatening episodes of a strong effusive eruption, started on 28 December from a new vent which opened close to the north-east crater of the volcano. In spite of the intensified monitoring carried out in response to the eruption, the landslides and the ensuing tsunamis were not foreseen, and the available instrumental data are insufficient to allow a precise reconstruction of the sequence of the events. The seismic network recorded two main landslides along the steep slope of Sciara del Fuoco, with onset around 13:15 and 13:23 local time (GMT+1). The tsunamis were the direct consequence of the mass movements. Three main post-event surveys helped make assessment on the wave impact on the coast.In this paper the attention is focussed on the accounts of the eye-witnesses, that help us clarify and understand what happened. People in the source area (Sciara del Fuoco) reported a small-volume subaerial slide taking place first, then a sharp cut forming in the sea water down to the sea floor (about 10-20 m deep) and propagating almost parallel to the coastline, be concomitantly associated with a sea retreat and a subsequent sea advance. It is suggested here that the cut was the effect of a large submarine landslide that detached from very close to the coast and produced the 13:15 signal in the recorded seismograms. The second, mostly subaerial, slump was observed to slide down 7-8 min later and to excite a train of waves some distance offshore. Not all the witnesses realised that two distinct tsunamis occurred. The tsunami period was probably in the order of 100 s, but shorter period crests were seen to travel on the top of the long-period waves by several persons. The duration of each tsunami was appreciated to be around 5-7 min. It is difficult to ascertainCorrespondence to: S. Tinti (steve@ibogfs.df.unibo.it) which tsunami was the largest, since there is no full agreement among the observers, but certainly by accounts both were characterised by large destructive waves.
South-eastern Sicily has been affected by large historical earthquakes, including the 11 January 1693 earthquake, considered the largest magnitude earthquake in the history of Italy (<i>M</i><sub>w</sub> = 7.4). This earthquake was accompanied by a large tsunami (tsunami magnitude 2.3 in the Murty-Loomis scale adopted in the Italian tsunami catalogue by Tinti et al., 2004), suggesting a source in the near offshore. The fault system of the eastern Sicily slope is characterised by NNW–SSE-trending east-dipping extensional faults active in the Quaternary. The geometry of a fault that appears currently active has been derived from the interpretation of seismic data, and has been used for modelling the tsunamigenic source. Synthetic tide-gauge records from modelling this fault source indicate that the first tsunami wave polarity is negative (sea retreat) in almost all the coastal nodes of eastern Sicily, in agreement with historical observations. The outcomes of the numerical simulations also indicate that the coastal stretch running from Catania to Siracusa suffered the strongest tsunami impact, and that the highest tsunami waves occurred in Augusta, aslo in agreement with the historical accounts. A large-size submarine slide (almost 5 km<sup>3</sup>) has also been identified along the slope, affecting the footwall of the active fault. Modelling indicates that this slide gives non-negligible tsunami signals along the coast; though not enough to match the historical observations for the 1693 tsunami event. The earthquake alone or a combination of earthquake faulting and slide can possibly account for the large run up waves reported for the 11 January 1693 event
On December 30, 2002, following an intense period of activity of Stromboli volcano (south Tyrrhenian Sea, Italy), complex mass failures occurred on the northwest slope of the mountain which also involved the underwater portion of the volcanic edifice for a total volume of about 2-3×10 7 m 3 . Two main landslides occurred within a time separation of 7 min, and both set tsunami waves in motion that hit the coasts of Stromboli causing injuries to three people and severe damage to buildings and structures. The tsunamis also caused damage on the island of Panarea, some 20 km to the SSE from the source. They were observed all over the Aeolian archipelago, at the island of Ustica to the west, along the northern Sicily coasts to the south as well as along the Tyrrhenian coasts of Calabria to the east and in Campania to the north. This paper presents field observations that were made in the days and weeks immediately following the events. The results of the quantitative investigations undertaken in the most affected places, namely along the coasts of Stromboli and on the island of Panarea, are reported in order to highlight the dynamics of the attacking waves and their impact on the physical environment, on the coastal structures and on the coastal residential zone. In Stromboli, the tsunami waves were most violent along the northern and northeastern coastal belt between Punta Frontone and the village of Scari, with maximum runup heights of about 11 m measured on the beach of Spiaggia Longa. Measured runups were observed Editorial responsibility: J. Gilbert
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.