Until recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability.
This article describes the UK Met Office Global Seasonal forecast system version 5 (GloSea5). GloSea5 upgrades include an increase in horizontal resolution in the atmosphere (N216-0.7 • ) and the ocean (0.25 • ), and implementation of a 3D-Var assimilation system for ocean and sea-ice conditions. GloSea5 shows improved year-to-year predictions of the major modes of variability. In the Tropics, predictions of the El Niño-Southern Oscillation are improved with reduced errors in the West Pacific. In the Extratropics, GloSea5 shows unprecedented levels of forecast skill and reliability for both the North Atlantic Oscillation and the Arctic Oscillation. We also find useful levels of skill for the western North Pacific Subtropical High which largely determines summer precipitation over East Asia.
ABSTRACT:The Met Office has recently introduced a short-range ensemble prediction system known as MOGREPS. This system consists of global and regional ensembles, with the global ensemble providing the boundary conditions and initial-condition perturbations for the regional ensemble. Perturbations to the initial conditions are calculated using the ensemble transform Kalman filter, which is a computationally-efficient version of the ensemble Kalman filter. Model uncertainties are represented in the system through a series of schemes designed to tackle the structural and subgrid-scale sources of model error.This paper describes the set-up of the system, and provides justification for the initial-condition and model perturbation schemes chosen. An outline of the structure of the perturbations generated by the system is presented, along with performance results, including verification from case studies and routine running.MOGREPS has been on trial within the operational suite at the Met Office since August 2005. On 20 October 2006 it was decided that this system should be made fully operational, with implementation expected in summer 2008. Results show a good performance. The regional ensemble is more skilful than the global ensemble, and compares favourably to the ECMWF ensemble for the forecast variables examined in this study. Crown
Precipitation nowcasting, the high-resolution forecasting of precipitation up to two hours ahead, supports the real-world socioeconomic needs of many sectors reliant on weather-dependent decision-making1,2. State-of-the-art operational nowcasting methods typically advect precipitation fields with radar-based wind estimates, and struggle to capture important non-linear events such as convective initiations3,4. Recently introduced deep learning methods use radar to directly predict future rain rates, free of physical constraints5,6. While they accurately predict low-intensity rainfall, their operational utility is limited because their lack of constraints produces blurry nowcasts at longer lead times, yielding poor performance on rarer medium-to-heavy rain events. Here we present a deep generative model for the probabilistic nowcasting of precipitation from radar that addresses these challenges. Using statistical, economic and cognitive measures, we show that our method provides improved forecast quality, forecast consistency and forecast value. Our model produces realistic and spatiotemporally consistent predictions over regions up to 1,536 km × 1,280 km and with lead times from 5–90 min ahead. Using a systematic evaluation by more than 50 expert meteorologists, we show that our generative model ranked first for its accuracy and usefulness in 89% of cases against two competitive methods. When verified quantitatively, these nowcasts are skillful without resorting to blurring. We show that generative nowcasting can provide probabilistic predictions that improve forecast value and support operational utility, and at resolutions and lead times where alternative methods struggle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.