Let K be a field which is complete for a discrete valuation. We prove a logarithmic version of the Néron-Ogg-Shafarevich criterion: if A is an abelian variety over K which is cohomologically tame, then A has good reduction in the logarithmic setting, i.e. there exists a projective, log smooth model of A over O K . This implies in particular the existence of a projective, regular model of A, generalizing a result of Künnemann. The proof combines a deep theorem of Gabber with the theory of degenerations of abelian varieties developed by Mumford, Faltings-Chai et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.